Void Handbook

"/OID

Void is a general purpose operating system, based on
the monolithic Linux kernel. Its package system
allows you to quickly install, update and remove
software; software is provided in binary packages or
can be built directly from sources with the help of the
XBPS source packages collection.

Void Handbook

12 March 2024

Contents
I —Aboutl 2
3
8__About This Handbookl 4
[3.1 Reading The Manuals) 4
3.2 xample Commands| 4
B.2.1 Placeholders] oo 4
[4_TnfraDocs] 5
[6_Tnstallationl 6
[5.1 Base system requirements| L 6
5.2 ownloading installation medial 6
P.3 Veritying images| L Lo 6
b.3.1 Veritying image integrityl. 6
p.3.2 Veritying digital signature|o 0oL 7
6_Live Installers| 8
6.1 Installer images| oo 8
6.1.1 Baseimages|. Lo 8
6.1.2 Xfceimage| 8
6.2 Accessibility support] o 8
6.3 Kernel Command-line Parameters| 9
[7_Prepare Installation Medial 10
[CL1_Creafe a bootable USB drive or SD card on Linuxl 10
[r.1.1 Identify the Device| oo oo 10
[7.1.2 Write the ive image| oL 10
7.2 Burningtoa CDor DVD| 000000000 11
|18 Partitioning Notes| 12
8.1 BIOS system notes| L o 12
8.2 UEFI systemnotes| 12
8.3 Swap partitions| 12
8.4 Boot partition (optional)|. 12
8.5 Other partitions] o o 13

9 » 2 14
9.2 Keyboard| 14
O3 Networll oo oo 14
9.4 Sourcel e e 14
9.5 Hostnamel e 14
9.6 Tocalel e 15
07 Timezond o oo 15
9.8 Root password| 15
9.9 Useraccountl 15
9.10 Bootloader] 15
9.11 Pa QL.+ v v e e e e e e e 15
9.12 Filesystems|o 15
9.13 Review settings| 16
9.14 Installl 16
9.15 Post installation| oo 16
10 Advanced Installation Guides| 17
[10.1 Section Contents| o . Lo 17
[11 Installation via chroot (x86/x86 64 /aarch64)| 18
I11.1 Prepare Filesystems| 18
I11.1.1 Create a New Root and Mount Filesystems| 18

19

19

11.2.2 The ROOTES Methodl 19

I11.3 Configuration| e 19
11.3.1 Entering the Chroot| 20
11.3.2 Install base-system (ROOTFS method only)[. 20
[I1.3.3 Tnstallation Configuration] 20
1134 Set a Root Passwordl 20
[11.3.5 Configure fstab| 0L 20
[L36 Enableservices . - - - .« v v vt ve e 21

[11.4 Installing GRUB| 21
[11.4.1 Troubleshooting GRUB 1nstallation| 22
[[nstalling on removable media or non-compliant UEFI systems| 22

015 Fipalization] 22
112 Full Disk Encryption| 23
112.1 Partitioning]o 23
[12.2 Encrypted volume configuration|. 23
[[233 System installation] 25
[12.3.1 Filesystem configuration|. 26
12.3.2 GRUB configuration| 26
112.4 LUKS key setup| 26
112.5 Complete system installation| 27

113 Installing Void on a ZFS Root| 28

3.1 ZFSBootMenul Lo 28
[13.2 Traditional bootloaders|o oL 28
13.2.1 Installation medial 28

13.2.2 Partition disks| Lo oo 28

113.2.3 Create a ZESpooll oo 29

113.2.4 Create mitial filesystems|. 30

[13.2.5 Mount the ZI'S hierarchy] 30

(326 Installation] i 31

14 ARM Devices| 32
4.1 Installationl 32
114.1.1 Pre-built images| 32

[14.1.2 Custom partition layout| 32

[(Tarball mnstallation| 33

[Chroot mmstallationl 33

[14.2 Configuration| 33
14.2.1 Logging inl. 33

14.2.2 fstabl. 33

[14.2.3 System time|. Lo 34

[14.2.4 Graphical session| oo Lo 34

|15 Supported Platforms| 35
I15.1 Raspberry P1|o o 35
I15.1.1 Supported Models| 35

15.1.2 Raspberry Pi 5 Kernell 35

15.1.3 Enabling hardware RNG device o o v v .. 35

[15.1.4 Graphical session| oL 36

[05.1.5 Hardwarel 36

Budid . . . o o 36

Seriall 36

1500 2 36

[15.1.7 Memory cgroup|. 36

16 musll 37
116.1 Incompatible software] 37
116.1.1 glibc chroot| o 37

|17 Configuration| 38
118 Package Documentation| 39
119 Manual Pages| 40
119.1 Localized manual pages| 41
L9.1.1 With mdocmll oo o 41

20 Firmwarel 42
20.1 Microcodel 42
20.1.1 Inmtell o o 42
................................ 42

20.1.3 Verification|o 42

120.2 Removing firmware| Lo oo 42

21 Locales and Translations| 43

21.1 Enabling locales| o oo 43
[21.2 Setting the system locale|. 43
PI3 Application locale] 43
122 Users and Groups| 44
22.1 Default shelll.o 44
P22 suddl . . 44
[22.3 Default Groups| 44
23 Services and Daemons - runitl 46
23.1 Section Contents| L L 46
23.2 Service Directories| o 46
[23.2.1 Configuring Services|o 46
123.2.2 Editing Services| oo o 47
123.3 Managing Services| 47
23.3.1 Runsvdirsl 47
[Booting A Difterent runsvdir| L. 47

23.3.2 Basic Usagel o 47
[Enabling Services|.o oo 48

[Disabling Services| L. 48

esting Services| Lo 48

24 Per-User Services 49
gging 50
25.1 Syslogl 50
B5TT SOKIOE . - - - o o 50
P5.1.2 Other syslog daemons| 50

|26 rc.conf, rc.local and rc.shutdown| 51
51

51

51

51

51

51

52

53

53

53

..................................... 53
.................................... 54
28.4.1 Non-root deviced 54
28.42 Root devices 54
[28.4.3 Veritying configuration|.o 54
..................................... 54
2851 Periodic TRIM| oo i it 55
28.5.2 Autotriml 55

82.2 Removing old kernels|.o o000
132.3 Removing the default kernel series|

[32.4 Switching to another kernel series|., ..

32.5 anging the default initramis generator{.

82.8.1 Loading kernel modules during boot|
182.8.2 Blacklisting kernel modules|
[Blacklisting modules in the mitramits|
dracut]

B4 Networkl
[34.2_Static Configuration|

34.3 Bridge Interfaces|

85.1.1 Applying the rules at boot|
135.1.2 Applying the rules at runtime|.o

135.2.1 Applying the rules at boot|

135.2.2 Applying the rules at runtime]

|36 wpa supplicant|

B36.1 WPA-PSKI.
36.2 WPA-BAP|

36.3.1 The wpa supplicant service

37 IW D!

.........................
87.3 Configuration|

87.3.1 Daemon configuration|
137.3.2 Network configuration|

37.4 Troubleshootingf.

[38 NetworkManager|

38.1 Starting NetworkManager|

138.2 Configuring NetworkManager|

36.3.2 Using wpa clil

138.3 Eduroam with NetworkManager|

38.3.1 Dependencies|

39 ConnMani

40 Network Filesystems|

40.1 NES[. . ..o

40.1.1 Mounting an NE'S Share|

40.1.2 Setting up a server (NFSv4, Kerberos disabled)|

41 Session and Seat Management)|

42 Graphical Session|

43 Graphics Drivers|

43.1 Section Contentsl

44 AMD or ATI

........................

69
69
69
69
69
70

71
71
71
71
71
71
71

73
73
73
73
73
73

74
74
74
74
74
74

75
(0]
(0]
(0]

76
76
76
76
76

77

80

/ OpenGL| 80
M52 Vulkanl oo 80
45.3 Video acceleration| oL 80
45.4 Troubleshootingf. oL 80
46 NVIDIA] 81
46.1 nouveau (Open Source Driver)| 81
46.2 nvidia (Proprietary Driver)| 81
46.3 32-bit program support (glibconly)l L. 81
16.4 Reverting from nvidia to DoUveau|. o oot 82
[46.4.1 Uninstalling nvidiaf 82

[46.4.2 Keeping both drivers|. 82

83

84

84

84

85

85

85

85

85

Mod = 85

8.2. roprietary Drivers|.o o 00000 85

48.3 Input Drivers| Lo 85
48.4 Xorg Configuration|. L o 86
48.4.1 Forcing the modesetting driver| 86

48.5 Starting X Sessions|o e 86
ERET Startxl . . . o o v v o 86

48.5.2 Display Managers| 86

87
EOTInstallafion] . . .« o v v v v oo e e e e 87
49.1.1 Desktop Environments|. 87

49.1.2 Standalone compositors| oo 87

M9.1.3 Videodrivers|o L oo 87

[49.1.4 Seat management|. 87

A9 15 Native applications] v v v v vt 88

Web Browsersl v vt v i 88

[Running X applications inside Wayland| 88

49.2 Configuration| 88
(50 Fonts| 89
B1Icons 90
BLIGTRl. « . o o oo o 90
[52 XDG Desktop Portals| 91
B2 Installation] v v oo oo e e e e 91
p2.2 Configuration| L L 91

53 GINOME] 92

B3I Pre-mnstallation]o 92
b3.2 Installationl oo 92
93.3 Starting GNOME].o 92
64 KDE 93
b4.1 Installationl oo 93

4 Dolphin| 93
54.2.1 Thumbnail Previews 93

65 Multimedial 94
P5.1 Audiosetup|o 94
66 ALSA] 95
96.1 Configuration| e 95
..................................... 95

Pipe W 96
7.1 Prerequisites| 96
P7.2 Basic Setup|o 96
p7.2.1 Session Management|o 96

07.2.2 PulseAudio interfacel o000 97

57.2.3 Testing] 97

[F7.2.4 Taunching Automatically] v .. 98

7.3 Optional Setup| 98
b7.3.1 Command-line and Terminal interfaces/. 98

97.3.2 Graphical interfaces| 0oL 98

07.3.3 Bluetooth audiol L oo 98

b7.3.4 ALSA integration|. 99
B7.3.5 JACK interfacel oL 99

p7.4 Troubleshooting|. o 99
741 Common errorsl v« ..o o e 99

p7.4.2 Only a "dummy" output i1s found|. 100

68 PulseAudial 101
59 Bluetoothl 102
09.1 Installation|l L 102

59.2 Usagel e 102
99.3 Configuration| Lo 102
[60 TeX Tivel 103
60.1 Configuring TeX Live] 103
60.2 Installing/Updating TeX packages| 103
61 External Applications| 105
61.1 Programming Languages|. 105
[61.2 Restricted Packages| 105
61.3 Non-x86 64 Arch| 105
61.4 Flatpakl oo 105
61.4.1 Troubleshootingl 106

61.5 Applmages| 106

61.6 Octave Packages| o oo, 106

61.7 MATLABI o e 106
BL8 Steaml ¢ oo e 106

P g 107
62.1 Installing Printing Drivers| 107
62.1.1 Driverless printing] oL 107

62.1.2 Gutenprint drivers|o oL 107
62.1.3 HP drivers] Lo 107

62.1.4 Brother driversl L 107

62.1.5 Drivers for Epson Inkjet printers| 107

62.1.6 Canon PIXMA/MAXIFY drivers| 107

62.2 Configuring a New Printer|. 108
62.2.1 Automatically|l. o 108
62.2.2 Web interfacelo 108

6223 CommandTimel 108

[62.2.4 Graphical interface| 108

62.3 Troubleshooting|. 108
62.3.1 USB printer not shown| 108

63 Containers and Virtual Machines| 109
63.1 Section Contentsl 109
164 Creating and using chroots and containers| 110
64.1 Chroot Creationl 110
64.1.1 xvoidstrap|.o 110

64.1.2 Manual Creationl oL 110

64.2 Chroot Usage| o o 110
64.2.1 xchrootl 110

[64.2.2 Manual Methodl., . 110

64.2.3 Alternatives o 111

Bubb D« o e e e e e e e e e e e e e e e e e 111

Flatpak| 111

[Application Containers| 111

[65 Tibvirtl 112
66 TXC| 113
66.1 Configuring LXC| 113
66.1.1 Creating unprivileged containers| 113

66.2 TLXDI e 114
67 GnuPGi 115
67.1 Smartcardslo 115
67.2 scdaemon with internal CCID driverl L. 115
67.3 scdaemon with pcsed backend|o oo 115
68 PHP 116
68.1 Versioned PHP Packages|. 116
68.2 PHP Meta-packages| 116

69 ackage Manager 117

69.1 Upd < 117
[69.1.1 Restarting Services|. 117

69.1.2 Kernel Panic After Updatel 118

169.2 Finding Files and Packages), 118
|70 Advanced Usage| 119
70.1 Downgrading] 119
70.1.1 Via xdowngrade| 119
70.1.2 Via XBPS|. 119

[70.2 Holding packages| oo 119
[70.3_Repository-locking packages| 0L, 119
[70.4 Tgnoring Packages|. o o v i 120
[70.5 Virtual Packages| oo 120
|71 Repositories| 121
[71.1 The main repositoryl 121
[71.2 Subrepositories| Lo 121
............................... 121

71.2.2 multalibl 121

[71.2.3 multilib/nonfree| oo 122

|f1.2.4 debug| 122
[Finding debug dependencies|. 122

[72 Mirrors| 123
[[2.1 Tor Mirrorsl e 123
73 Changing Mirrors| 124
MO XIMITON « o v o e e e e e e e 124
[(3.2 Manual Methodl. o oo 124

74 Using Tor Mirrors 125
.1 Using WIED TOI .« . v v e e 125
[r4.1.1 Installing Tor| 125

[74.1.2 Making XBPS connect via the SOCKS proxy| 125

[74.1.3 Using a hidden service mirror| 125

[74.1.4 Security consideration| 126

|75 Restricted Packages| 127
[75.1 Building manually] 00 oo 127
[75.2 Automated building] o oo 127
76 Custom Repositories| 128
[76.1 Adding custom repositories| 128
[77 Signing Repositories| 129
[78 Troubleshooting XBPS| 130
[(8.1 Section Contents| L 130

10

79 Common Issues|
79.1 Veritying RSA keys|.
[79.2 Errors while updating or installing packages|

[79.2.T "Operation not permitted"|
79.2.2 "Not Found"l

179.2.4 repodata errors|
[79.3 Broken systems|

80 Static XBPS
180.1 Obtaining static XBPS|.
180.2 Using static XBPS|

181 Contributing]
I81.1 Usage Statistics|.
81.1.1 Setting up PopCornl

182 Contributing To void-docs|

11

131
131
131
131
131
131
132
132

133
133
133

134
134
134

135

1 About

Welcome to the Void Handbook! Please be sure to read the "[About This Handbook!"
section to learn how to use this documentation effectively. A local copy of this hand-
book, in several formats, can be via the void-docs package and accessed
with the void-docs(1)| utility.

Void is an independent, rolling release Linux distribution, developed from scratch
rather than as a fork, with a focus on stability over bleeding-edge. In addition, there
are several features that make Void unique:

e The [XBPS package manager, which is extremely fast, developed in-house, and
performs checks when installing updates to ensure that libraries are not changed
to incompatible versions which can break dependencies.

e The musl libc, which focuses on standards compliance and correctness, has first
class support. This allows us to build certain components for musl systems
statically, which would not be practical on glibc systems.

o is used for [init(8) and service supervision. This allows Void to support
musl as a second libc choice, which would not be possible with systemd. A side
effect of this decision is a core system with clean and efficient operation, and a
small code base.

Void is developed in the spare time of a handful of developers, and is generally con-
sidered stable enough for daily use. We do this for fun and hope that our work will
be useful to others.

The name "Void" comes from the C literal void. It was chosen rather randomly,
and is void of any meaning.

12

https://man.voidlinux.org/void-docs.1
https://en.wikipedia.org/wiki/Rolling_release
https://en.wikipedia.org/wiki/Bleeding_edge_technology
https://github.com/void-linux/xbps
https://musl.libc.org/
https://man.voidlinux.org/init.8
https://www.freedesktop.org/wiki/Software/systemd/

2 History

Knowledge of the ancients, grepped from the Git logs themselves:

2008-09-26:
2009-08-17:
2011-06-25:
2013-03-01:
2014-07-14:
2014-07-28:
2015-07-09:
2018-07-06:

parency

2021-03-05:

first Git import of void-packages

first Git import of xbps

first systemd commit in void-packages
first musl toolchains added

begin switching to LibreSSL

switch from systemd to runit

full aarch64 support with linux4.1

first use of Terraform for GitHub permissions, for increased trans-

begin |switching to |OpenSSL

13

https://github.com/void-linux/void-packages
https://github.com/void-linux/xbps
https://musl.libc.org/
https://www.libressl.org/
http://smarden.org/runit/
https://github.com/void-linux/void-infrastructure/tree/master/terraform
https://github.com/void-linux/void-packages/commit/d90dba0ae27c4bb22cbb1722f70e4ed6d599e473
https://www.openssl.org/

3 About This Handbook

This handbook is not an extensive guide on how to use and configure common Linux
software. The purpose of this document is to explain how to install, configure, and
maintain Void Linux systems, and to highlight the differences between common Linux
distributions and Void.

To search for a particular term within the Handbook, select the 'magnifying glass’
icon, or press ’s’.

Those looking for tips and tricks on how to configure a Linux system in general
should consult upstream software documentation. Additionally, the |[Arch Wiki pro-
vides a fairly comprehensive outline of common Linux software configuration, and a
variety of internet search engines are available for further assistance.

3.1 Reading The Manuals

While this handbook does not provide a large amount of copy and paste configura-
tion instructions, it does provide links to the man pages| for the referenced software
wherever possible.

To learn how to use the man(1) man page viewer, run the command man man. It
can be configured by editing /etc/man.conf; read man.conf(5)| for details.

Void uses the mandoc toolset for man pages. mandoc was formerly known as
"mdocml", and is provided by the mdocml package.

3.2 Example Commands

Examples in this guide may have snippets of commands to be run in your shell. When
you see these, any line beginning with $ is run as your normal user. Lines beginning
with # are run as root. After either of these lines, there may be example output from
the command.

3.2.1 Placeholders

Some examples include text with placeholders. Placeholders indicate where you
should substitute the appropriate information. For example:

1n -s /etc/sv/<service_name> /var/service/

This means you need to substitute the text <service_name> with the actual ser-
vice name.

14

https://wiki.archlinux.org/
https://man.voidlinux.org/
https://man.voidlinux.org/man.1
https://man.voidlinux.org/man.conf.5
https://mandoc.bsd.lv/

4 InfraDocs

InfraDocs is the meta-manual for the Void project systems management.

15

https://infradocs.voidlinux.org/

5 Installation

This section includes general information about the process of installing Void. For
specific guides, see the "[Advanced Installation|" section.

5.1 Base system requirements

Void can be installed on very minimalist hardware, though we recommend the follow-
ing minimums for most installations:

’ Architecture \ CPU \ RAM \ Storage ‘
x86 _64-glibc | x86 64 96MB | 700MB
x86_64-musl | x86_ 64 96MB | 600MB

i686-glibc Pentium 4 (SSE2) | 96MB | 700MB

Note that xfce image installations require more resources.

Void is not available for the 1386, 1486, or i586 architectures.

Before installing musl Void, please read [the "musl" section| of this Handbook, so
that you are aware of software incompatibilities.

It is highly recommended to have a network connection available during install
to download updates, but this is not required. ISO images contain installation data
on-disk and can be installed without network connectivity.

5.2 Downloading installation media

The most recent live images and rootfs tarballs can be downloaded from https://repo-
default.voidlinux.org/live/current/. They can also be downloaded from [other mirrors|
Previous releases can be found under https://repo-default.voidlinux.org/live/, orga-
nized by date.

5.3 Verifying images

Each image release’s directory contains two files used to verify the image(s) you down-
load. First, there is a sha256sum.txt file containing image checksums to verify the
integrity of the downloaded images. Second is the sha256sum.sig file, used to verify
the authenticity of the checksums.

It is necessary to verify both the image’s integrity and authenticity. It is, therefore,
recommended that you download both files.

5.3.1 Verifying image integrity

You can verify the integrity of a downloaded file using sha256sum(1) with the
sha256sum. txt file downloaded above. The following command will check the in-
tegrity of only the image(s) you have downloaded:

$ sha2b56sum -c --ignore-missing sha256sum.txt
void-live-x86_64-musl-20170220.1iso0: 0K

This verifies that the image is not corrupt.

16

https://repo-default.voidlinux.org/live/current/
https://repo-default.voidlinux.org/live/current/
https://repo-default.voidlinux.org/live/
https://man.voidlinux.org/sha256sum.1

5.3.2 Verifying digital signature

Prior to using any image you’re strongly encouraged to validate the signatures on the
image to ensure they haven’t been tampered with.

Current images are signed using a minisign key that is specific to the release.
If you're on Void already, you can obtain the keys from the void-release-keys
package, which will be downloaded using your existing XBPS trust relationship with
your mirror and package signatures. You will also need a copy of minisign(1); on
Void, this is provided by the minisign package.

The minisign executable is usually provided by a package of the same name, and
can also be installed on Windows, even without WSL or MinGW.

If you are not currently using Void Linux, it will also be necessary to obtain the
appropriate signing key from our Git repository here.

Once you’ve obtained the key, you can verify your image with the sha256sum.sig
and sha256sum.txt files. First, you need to verify the authenticity of the
sha256sum. txt file.

The following example demonstrates the verification of the sha256sum. txt file for
the 20230628 images with minisign:

$ minisign -V -p /usr/share/void-release-keys/void-release
-20230628.pub -x sha2b6sum.sig -m sha256sum.txt

Signature and comment signature verified

Trusted comment: This key is only valid for images with
date 20230628.

Finally, you need to verify that the checksum for your image matches the one in
the sha256sum. txt file. This can be done with the sha256(1) utility from the outils
package, as demonstrated below for the 20230628 x86_64 base image:

$ sha256 -C sha256sum.txt void-live-x86_64-20230628-base.
iso
(SHA256) void-live-x86_64-20230628-base.iso: 0K

Alternatively, if the sha256 utility isn’t available to you, you can use
sha256sum(1):

$ sha256sum -c sha256sum.txt --ignore-missing
void-live-x86_64-20230628-base.iso: 0K

If neither program is available to you, you can compute the SHA256 hash of the
file and compare it to the value contained in sha256sum.txt.

If the verification process does not produce the expected "OK" status, do not use
it! Please alert the Void Linux team of where you got the image and how you verified
it, and we will follow up on it.

17

https://man.voidlinux.org/minisign.1
https://github.com/void-linux/void-packages/tree/master/srcpkgs/void-release-keys/files/
https://man.voidlinux.org/md5.1
https://man.voidlinux.org/sha256sum.1

6 Live Installers

Void provides live installer images containing a base set of utilities, an installer pro-
gram, and package files to install a new Void system. These live images are also useful
for repairing a system that is not able to boot or function properly.

There are x86_64 images for both glibc and musl based systems. There are also
images for 1686, but only glibc is supported for this architecture. Live installers
are not provided for other architectures. Users of other architectures will need to use
rootfs tarballs, or perform an installation manually.

6.1 Installer images

Void releases two types of images: base images and xfce images. Linux beginners are
encouraged to try one of the more full-featured xfce images, but more advanced users
may often prefer to start from a base image to install only the packages they need.

6.1.1 Base images

The base images provide only a minimal set of packages to install a usable Void system.
These base packages are only those needed to configure a new machine, update the
system, and install additional packages from repositories.

6.1.2 Xfce image

The xfce image includes a full desktop environment, web browser, and basic applica-
tions configured for that environment. The only difference from the base images is
the additional packages and services installed.

The following software is included:

e Window manager: xfwm4

e File manager: Thunar

e Web Browser: Firefox

e Terminal: xfced-terminal

e Plain text editor: Mousepad
e Image viewer: Ristretto

e Other: Bulk rename, Orage Globaltime, Orage Calendar, Task Manager, Pa-
role Media Player, Audio Mixer, MIME type editor, Application finder

The install process for the xfce image is the same as the base images, except that
you must select the Local source when installing. If you select Network instead, the
installer will download and install the latest version of the base system, without any
additional packages included on the live image.

6.2 Accessibility support

All Void installer images support the console screenreader espeakup and the console
braille display driver brltty. These services can be enabled at boot by pressing s in
the bootloader menu to enable accessibility support. On UEFI-based systems, GRUB
is the bootloader, and it will play a two-tone chime when the menu is available. On

18

https://man.voidlinux.org/espeakup.8
https://man.voidlinux.org/brltty.1

BIOS-based systems and UEFI systems in legacy/compatibility mode, SYSLINUX is
the bootloader, and no chime is played. SYSLINUX also requires pressing the enter
key after pressing s. The hotkey r will also boot with accessibility support, but will
load the live ISO into RAM.

After booting into the installer image with accessibility support enabled, if there
are multiple soundcards detected, a short audio menu allows for the selection of the
soundcard for the screenreader. Press enter when the beep for the desired soundcard
is heard to select it.

If the Local installation source is selected in the installer, espeakup and brltty
will also be installed and enabled on the installed system if enabled in the live envi-
ronment.

The xfce image also supports the graphical screenreader orca. This can be enabled
by pressing Win + R and entering orca -r. Orca will also be available on the installed
system if the Local installation source is selected.

6.3 Kernel Command-line Parameters

Void installer images support several kernel command-line arguments that can change
the behavior of the live system. See the void-mklive README for a full list.

19

https://man.voidlinux.org/orca.1
https://github.com/void-linux/void-mklive#kernel-command-line-parameters

7 Prepare Installation Media

After [downloading a live image] it must be written to bootable media, such as a USB
drive, SD card, or CD/DVD.

7.1 Create a bootable USB drive or SD card on Linux
7.1.1 Identify the Device

Before writing the image, identify the device you’ll write it to. You can do this using
fdisk(8). After connecting the storage device, identify the device path by running:

fdisk -1

Disk /dev/sda: 7.5 GiB, 8036286464 bytes, 15695872 sectors
Disk model: Your USB Device’s Model

Units: sectors of 1 *x 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

In the example above, the output shows the USB device as /dev/sda. On Linux,
the path to the device will typically be in the form of /dev/sdX (where X is a letter)
for USB devices, /dev/mmcblkX for SD cards, or other variations depending on the
device. You can use the model and size (‘7.5GiB* above, after the path) to identify
the device if you're not sure what path it will have.

Once you’ve identified the device you’ll use, ensure it’s not mounted by unmount-
ing it with jumount(8):

umount /dev/sdX
umount: /dev/sdX: not mounted.

7.1.2 Write the live image

The |dd(1) command can be used to copy a live image to a storage device. Using dd,
write the live image to the device:

Warning: this will destroy any data currently on the referenced device. Exercise
caution.

dd bs=4M if=/path/to/void-live-ARCH-DATE-VARIANT.iso of
=/dev/sdX

90+0 records in

90+0 records out

377487360 bytes (377 MB, 360 MiB) copied, 0.461442 s, 818
MB/s

dd won’t print anything until it’s completed (or if it failed), so, depending on the
device, this can take a few minutes or longer. You can enable printing by adding

status=progress to the command if using GNU coreutils dd.
Finally, ensure all data is flushed before disconnecting the device:

$ sync

The number of records, amount copied, and rates will all vary depending on the
device and the live image you chose.

20

https://man.voidlinux.org/man8/fdisk.8
https://man.voidlinux.org/man8/umount.8
https://man.voidlinux.org/man1/dd.1

7.2 Burning to a CD or DVD

Any disk burning application should be capable of writing the .iso file to a CD or
DVD. The following free software applications are available (cross-platform support
may vary):

e Brasero
o K3B
o Xfburn

It should be noted that, with a CD or DVD, live sessions will be less responsive than
with a USB stick or hard drive.

21

https://wiki.gnome.org/Apps/Brasero/
https://userbase.kde.org/K3b
https://docs.xfce.org/apps/xfburn/start

8 Partitioning Notes

Partitioning for a modern Linux distribution is generally very simple, however the
introduction of GPT and UEFI booting does bring new complexity to the process.
When creating your new partition table you will need a partition for the root filesys-
tem, along with a swap partition and possibly another partition or two to facilitate
booting, if required.

Note that if the disk has already been initialized, the top of the cfdisk screen
will show the partition layout already present: Label: dos for the MBR scheme,
Label: gpt for the GPT scheme. If you just want to erase the partition table before
starting the installer, use wipefs(8). Otherwise, you can run cfdisk(8) manually
with the -z option to start with an uninitialized disk layout; cfdisk will prompt you
for the label type before continuing to the main screen.

The following sections will detail the options for partition configuration.

8.1 BIOS system notes

It is recommended that you create an MBR partition table if you are using a BIOS
boot system. This will limit the number of partitions you create to four.

It is possible to use a GPT partition table on a BIOS system, but GRUB
will require a special partition to boot properly. This partition should be at the
beginning of your disk and have a size of 1MB, with type BIOS boot (GUID
21686148-6449-6E6F-744E-656564454649). Don’t create any filesystem in it.
GRUB should then install itself successfully.

8.2 UEFI system notes

UEFT users are recommended to create a GPT partition table. UEFI booting with
GRUB also requires a special partition of the type EFI System with a vfat filesystem
mounted at /boot/efi. A reasonable size for this partition could be between 200MB
and 1GB. With this partition setup during the live image installation, the installer
should successfully set up the bootloader automatically.

8.3 Swap partitions

A swap partition is not strictly required, but recommended for systems with low
RAM. If you want to use hibernation, you will need a swap partition. The following
table has recommendations for swap partition size.

’ System RAM \ Recommended swap space \ Swap space if using hibernation

< 2GB 2x the amount of RAM 3x the amount of RAM
2-8GB Equal to amount of RAM | 2x the amount of RAM
8-64GB At least 4GB 1.5x the amount of RAM
64GB At least 4GB Hibernation not recommended

8.4 Boot partition (optional)

On most modern systems, a separate /boot partition is no longer necessary to boot
properly. If you choose to use one, note that Void does not remove old kernels after
updates by default and also that the kernel tends to increase in size with each new

22

version, so plan accordingly (e.g. /boot with one Linux 5.x x86_64 kernel and GRUB
occupies about 60MB).

8.5 Other partitions

It is fine to install your system with only a large root partition, but you may create
other partitions if you want. One helpful addition could be a separate partition for
your /home directory. This way if you need to reinstall Void (or another distribution)
you can save the data and configuration files in your home directory for your new
system.

23

9 Installation Guide
Once you have a Void image to install and your install media,

you are ready to install Void Linux.

Before you begin installation, you should determine whether your machine boots
using BIOS or UEFI. This will affect how you plan partitions. See|Partitioning Notes|
for more detail.

The following features are not supported by the installer script:

e LVM
e LUKS
e ZF'S

9.1 Booting

Boot your machine from the install media you created. If you have enough RAM,
there is an option on the boot screen to load the entire image into ram, which will
take some time but speed up the rest of the install process.

Once the live image has booted, log in as root with password voidlinux and run:

void-installer

The following sections will detail each screen of the installer.

9.2 Keyboard

Select the keymap for your keyboard; standard "qwerty" keyboards will generally use
the "us" keymap.

9.3 Network

Select your primary network interface. If you do not choose to use DHCP, you will
be prompted to provide an IP address, gateway, and DNS servers.

If you choose a wireless network interface, you will be prompted to provide the
SSID, encryption type (‘wpa‘ or wep), and password. If void-installer fails to
connect to your network, you may need to exit the installer and configure it manually
using [wpa supplicant| and [dhcped| before continuing.

9.4 Source

To install packages provided on the install image, select Local. Otherwise, you may
select Network to download the latest packages from the Void repository.

Warning: If you are installing the desktop environment from the xfce

image, you MUST choose Local for the source!

9.5 Hostname

Select a hostname for your computer (that is all lowercase, with no spaces.)

24

https://en.wikipedia.org/wiki/Logical_volume_management
https://en.wikipedia.org/wiki/Linux_Unified_Key_Setup
https://en.wikipedia.org/wiki/ZFS

9.6 Locale

Select your default locale settings. This option is for glibc only, as musl does not
currently support locales.

9.7 Timezone

Select your timezone based on standard timezone options.

9.8 Root password

Enter and confirm your root password for the new installation. The password will
not be shown on screen.

9.9 User account

Choose a login (default void) and a descriptive name for that login. Then enter and
confirm the password for the new user. You will then be prompted to verify the
groups for this new user. They are added to the wheel group by default and will have
sudo access. Default groups and their descriptions are listed

Login names have some restrictions, as described in useradd(8).

9.10 Bootloader

Select the disk to install a bootloader on when Void is installed. You may select none
to skip this step and install a bootloader manually after completing the installation
process. If installing a bootloader, you will also be asked whether or not you want a
graphical terminal for the GRUB menu.

9.11 Partition

Next, you will need to partition your disks. Void does not provide a preset partition
scheme, so you will need to create your partitions manually with cfdisk(8). You will
be prompted with a list of disks. Select the disk you want to partition and the installer
will launch cfdisk for that disk. Remember you must write the partition table to
the drive before you exit the partition editor.

If using UEFI, it is recommended you select GPT for the partition table and
create a partition (typically between 200MB-1GB) of type EFI System, which will be
mounted at /boot/efi.

If using BIOS, it is recommended you select MBR for the partition table. Advanced
users may use GPT but will need to [create a special BIOS partition| for GRUB to
boot.

See the [Partitioning Notes| for more details about partitioning your disk.

9.12 Filesystems

Create the filesystems for each partition you have created. For each partition you will
be prompted to choose a filesystem type, whether you want to create a new filesystem
on the partition, and a mount point, if applicable. When you are finished, select Done
to return to the main menu.

If using UEFI, create a vfat filesystem and mount it at /boot/efi.

25

https://man.voidlinux.org/useradd.8#CAVEATS
https://man.voidlinux.org/cfdisk.8

9.13 Review settings

It is a good idea to review your settings before proceeding. Use the right arrow key
to select the settings button and hit <enter>. All your selections will be shown for
review.

9.14 Install

Selecting Install from the menu will start the installer. The installer will create all
the filesystems selected, and install the base system packages. It will then generate
an initramfs and install a GRUB2 bootloader to the bootable partition.

These steps will all run automatically, and after the installation is completed
successfully, you can reboot into your new Void Linux install!

9.15 Post installation

After booting into your Void installation for the first time, [perform a system update

26

10 Advanced Installation Guides

This section contains guides for more specific or complex use-cases.

10.1 Section Contents
o [Installing Void via chroot (x86 or x86 64)|

e [[nstalling Void with Full Disk Encryption|

e [[nstalling Void on a ZEFS Root|
o [ARM Devices

27

11 Installation via chroot (x86/x86 64/aarch64)

This guide details the process of manually installing Void via a chroot on an x86,
x86 64 or aarch64 architecture. It is assumed that you have a familiarity with Linux,
but not necessarily with installing a Linux system via a chroot. This guide can be used
to create a "typical" setup, using a single partition on a single SATA /IDE/USB disk.
Each step may be modified to create less typical setups, such as [full disk encryption|

Void provides two options for bootstrapping the new installation. The XBPS
method uses the |[XBPS Package Manager| running on a host operating system to in-
stall the base system. The ROOTFS method installs the base system by unpacking
a ROOTFS tarball.

The XBPS method requires that the host operating system have XBPS installed.
This may be an existing installation of Void, an official or any Linux
installation running a [statically linked XBPS|

The ROOTFS method requires only a host operating system that can enter
a Linux chroot and that has both [tar(1)| and xz(1) installed. This method may be
preferable if you wish to install Void using a different Linux distribution.

11.1 Prepare Filesystems

[Partition your disks| and format them using mke2fs(8), mkfs.xfs(8), mkfs.btrfs(8) or
whatever tools are necessary for your filesystem(s) of choice.

mkfs.vfat(8)|is also available to create FAT32 partitions. However, due to restric-
tions associated with FAT filesystems, it should only be used when no other filesystem
is suitable (such as for the EFI System Partition).

ctdisk(8) and fdisk(8)| are available on the live images for partitioning, but you
may wish to use gdisk(8) (from the package gptfdisk) or parted(8)|instead.

For a UEFI booting system, make sure to create an EFI System Partition (ESP).
The ESP should have the partition type "EFI System" (code EF00) and be formatted
as FAT32 using mkfs.vfat(8).

If you’re unsure what partitions to create, create a 1GB partition of type "EFI
System" (code EF00), then create a second partition of type "Linux Filesystem" (code
8300) using the remainder of the drive.

Format these partitions as FAT32 and ext4, respectively:

mkfs.vfat /dev/sdal
mkfs.ext4 /dev/sda2

11.1.1 Create a New Root and Mount Filesystems

This guide will assume the new root filesystem is mounted on /mnt. You may wish
to mount it elsewhere.

If using UEFI, mount the EFI System Partition as /mnt/boot/efi.

For example, if /dev/sda2 is to be mounted as / and dev/sdal is the EFI System
Partition:

mount /dev/sda2 /mnt/
mkdir -p /mnt/boot/efi/
mount /dev/sdal /mnt/boot/efi/

Initialize swap space, if desired, using mkswap(8).

28

https://man.voidlinux.org/tar.1
https://man.voidlinux.org/xz.1
https://man.voidlinux.org/mke2fs.8
https://man.voidlinux.org/mkfs.xfs.8
https://man.voidlinux.org/mkfs.btrfs.8
https://man.voidlinux.org/mkfs.vfat.8
https://man.voidlinux.org/cfdisk.8
https://man.voidlinux.org/fdisk.8
https://man.voidlinux.org/gdisk.8
https://man.voidlinux.org/parted.8
https://man.voidlinux.org/mkfs.vfat.8
https://man.voidlinux.org/mkswap.8

11.2 Base Installation

Follow only one of the two following subsections.

If on aarch64, it will be necessary to install a kernel package in addition to
base-system. For example, linux is a kernel package that points to the latest stable
kernel packaged by Void.

11.2.1 The XBPS Method

Select a and use the [appropriate URL] for the type of system you wish
to install. For simplicity, save this URL to a shell variable. A glibc installation, for
example, would use:

REPO=https://repo-default.voidlinux.org/current

XBPS also needs to know what architecture is being installed. Available options
are x86_64, x86_64-musl, 1686 for PC architecture computers and aarch64. For
example:

ARCH=x86_64

This architecture must be compatible with your current operating system, but
does not need to be the same. If your host is running an x86 64 operating system,
any of the three architectures can be installed (whether the host is musl or glibc), but
an i686 host can only install 1686 distributions.

Copy the RSA keys from the installation medium to the target root directory:

mkdir -p /mnt/var/db/xbps/keys
cp /var/db/xbps/keys/* /mnt/var/db/xbps/keys/

Use xbps-install(1) to bootstrap the installation by installing the base-system
metapackage:

XBPS_ARCH=$ARCH xbps-install -S -r /mnt -R "$REPO" base-
system

11.2.2 The ROOTFS Method

Download a ROOTFS tarball matching your architecture.
Unpack the tarball into the newly configured filesystems:

tar xvf void-<...>-ROOTFS.tar.xz -C /mnt

11.3 Configuration

With the exception of the section "Install base-system (ROOTFS method only)",
the remainder of this guide is common to both the XBPS and ROOTFS installation
methods.

29

https://man.voidlinux.org/xbps-install.1
https://voidlinux.org/download/#download-installable-base-live-images-and-rootfs-tarballs

11.3.1 Entering the Chroot

xchroot(1) (from xtools) can be used to set up and enter the chroot. Alternatively,

this can be |[done manua

xchroot /mnt /bin/bash

11.3.2 Install base-system (ROOTFS method only)

ROOTEFS images generally contain out of date software, due to being a snapshot
of the time when they were built, and do not come with a complete base-system.
Update the package manager and install base-system:

[xchroot /mnt]
[xchroot /mnt]
[xchroot /mnt]
[xchroot /mnt]

xbps-install -Su xbps
xbps-install -u
xbps-install base-system

H O H ®

xbps-remove base-container -full

11.3.3 Installation Configuration

Specify the hostname in /etc/hostname. Go through the options in
If installing a glibc distribution, edit /etc/default/libc-locales, uncommenting

desired [[ocales

nvi(1) is available in the chroot, but you may wish to install your preferred text
editor at this time.
For glibc builds, generate locale files with:

[xchroot /mnt] # xbps-reconfigure -f glibc-locales

11.3.4 Set a Root Password

[Configure at least one super user account] Other user accounts can be configured
later, but there should either be a root password, or a new user account with sudo(8)
privileges.

To set a root password, run:

[xchroot /mnt] # passwd

11.3.5 Configure fstab

The (fstab(5) file can be automatically generated from currently mounted filesystems
by copying the file /proc/mounts:

[xchroot /mnt] # cp /proc/mounts /etc/fstab
Remove lines in /etc/fstab that refer to proc, sys, devtmpfs and pts.
Replace references to /dev/sdXX, /dev/nvmeXnYpZ, etc. with their respective

UUID, which can be found by running blkid(8). Referring to filesystems by their
UUID guarantees they will be found even if they are assigned a different name at a

30

https://man.voidlinux.org/xchroot.1
https://man.voidlinux.org/nvi.1
https://man.voidlinux.org/sudo.8
https://man.voidlinux.org/fstab.5
https://man.voidlinux.org/blkid.8

later time. In some situations, such as booting from USB, this is absolutely essential.
In other situations, disks will always have the same name unless drives are physically
added or removed. Therefore, this step may not be strictly necessary, but is almost
always recommended.

Change the last zero of the entry for / to 1, and the last zero of every other line
to 2. These values configure the behaviour of fsck(8).

For example, the partition scheme used throughout previous examples yields the
following fstab:

/dev/sdal /boot/efi vfat rw,relatime, [...]
00
/dev/sda?2 / ext4 rw,relatime
00

The information from blkid results in the following /etc/fstab:

UUID=6914[...] /boot/efi vfat rw,relatime, [...]
0 2
UUID=dcibl[...]1 / extd rv,relatime
01

Note: The output of /proc/mounts will have a single space between each field.
The columns are aligned here for readability.
Add an entry to mount /tmp in RAM:

tmpfs /tmp tmpfs defaults ,nosuid,nodev
00

If using swap space, add an entry for any swap partitions:

UUID=1cb4[...] swap swap rw,noatime ,discard
00

11.3.6 Enable services

Services can be after booting the new system, but you may need to enable
some of them (e.g.: dhcped, sshd) now in order to access it.

11.4 Installing GRUB

Use |grub-install| to install GRUB onto your boot disk.

On a BIOS computer, install the package grub, then run grub-install
/dev/sdX, where /dev/sdX is the drive (not partition) that you wish to install GRUB
to. For example:

[xchroot /mnt] # xbps-install grub
[xchroot /mnt] # grub-install /dev/sda

On a UEFI computer, install either grub-x86_64-efi, grub-i386-efi or
grub-armé4-efi, depending on your architecture, then run grub-install, optionally
specifying a bootloader label (this label may be used by your computer’s firmware
when manually selecting a boot device):

31

https://man.voidlinux.org/fsck.8
https://www.gnu.org/software/grub/manual/grub/html_node/Installing-GRUB-using-grub_002dinstall.html

[xchroot /mnt] # xbps-install grub-x86_64-efi
[xchroot /mnt] # grub-install --target=x86_64-efi --efi-
directory=/boot/efi --bootloader-id="Void"

11.4.1 Troubleshooting GRUB installation

It may be necessary to mount the efivarfs filesystem.

[xchroot /mnt] # mount -t efivarfs none /sys/firmware/efi/
efivars

If EFI variables are still not available, add the option -no-nvram to the
grub-install command.

Installing on removable media or non-compliant UEFI systems Unfortu-
nately, not all systems have a fully standards compliant UEFI implementation. In
some cases, it is necessary to "trick" the firmware into booting by using the default
fallback location for the bootloader instead of a custom one. In that case, or if in-
stalling onto a removable disk (such as USB), add the option -removable to the
grub-install command.

Alternatively, use mkdir(l) to create the /boot/efi/EFI/boot di-
rectory and copy the installed GRUB executable, wusually located in
/boot/efi/EFI/Void/grubx64.efi (its location can be found using efibootmgr(8)),
into the new folder:

[xchroot /mnt] # mkdir -p /boot/efi/EFI/boot
[xchroot /mnt] # cp /boot/efi/EFI/Void/grubx64.efi /boot/
efi/EFI/boot/bootx64.efi

11.5 Finalization

Use xbps-reconfigure(1)| to ensure all installed packages are configured properly:
[xchroot /mnt] # xbps-reconfigure -fa

This will make dracut(8) generate an initramfs, and will make GRUB generate a

working configuration.
At this point, the installation is complete. Exit the chroot and reboot your com-

puter:

[xchroot /mnt] # exit
umount -R /mnt
shutdown -r now

After booting into your Void installation for the first time, [perform a system]

32

https://man.voidlinux.org/mkdir.1
https://man.voidlinux.org/efibootmgr.8
https://man.voidlinux.org/xbps-reconfigure.1
https://man.voidlinux.org/dracut.8

12 Full Disk Encryption

Warning: Your drive’s block device and other information may be different, so make
sure it is correct.

12.1 Partitioning

Boot a live image and login.
Create a single physical partition on the disk using [cfdisk, marking it as bootable.
For an MBR system, the partition layout should look like the following.

fdisk -1 /dev/sda

Disk /dev/sda: 48 GiB, 51539607552 bytes, 100663296
sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x4d532059

Device Boot Start End Sectors Size Id Type
/dev/sdal % 2048 100663295 100661248 48G 83 Linux

UEFI systems will need the disk to have a GPT disklabel and an EFI system
partition. The required size for this may vary depending on needs, but 100M should
be enough for most cases. For an EFI system, the partition layout should look like
the following.

fdisk -1 /dev/sda

Disk /dev/sda: 48 GiB, 51539607552 bytes, 100663296
sectors

Units: sectors of 1 *x 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: gpt

Disk identifier: EE4F2A1A-8E7F-48CA-B3D0O-BD7A01F6D8AO

Device Start End Sectors Size Type

/dev/sdal 2048 264191 262144 128M EFI System

/dev/sda2 264192 100663262 100399071 47.9G Linux
filesystem

12.2 Encrypted volume configuration

Cryptsetup defaults to LUKS2, yet GRUB releases before 2.06 only had support for
LUKSI.

LUKS?2 is only partially supported by GRUB; specifically, only the PBKDF2 key
derivation function is implemented, which is *not* the default KDF used with LUKS2,
that being Argon2i (GRUB Bug 59409). LUKS encrypted partitions using Argon2i
(as well as the other KDF) can *not* be decrypted. For that reason, this guide only
recommends LUKS1 be used.

33

https://man.voidlinux.org/cfdisk
https://man.voidlinux.org/cryptsetup.8
https://git.savannah.gnu.org/cgit/grub.git/commit/?id=365e0cc3e7e44151c14dd29514c2f870b49f9755
https://savannah.gnu.org/bugs/?59409

Keep in mind the encrypted volume will be /dev/sda2 on EFI systems, since
/dev/sdal is taken up by the EFI partition.

cryptsetup luksFormat --type luksl /dev/sdal

WARNING!

This will overwrite data on /dev/sdal irrevocably.

Are you sure? (Type uppercase yes): YES
Enter passphrase:
Verify passphrase:

Once the volume is created, it needs to be opened. Replace voidvm with an
appropriate name. Again, this will be /dev/sda2 on EFI systems.

cryptsetup luksOpen /dev/sdal voidvm
Enter passphrase for /dev/sdal:

Once the LUKS container is opened, create the LVM volume group using that
partition.

vgcreate voidvm /dev/mapper/voidvm
Volume group "voidvm" successfully created

There should now be an empty volume group named voidvm.
Next, logical volumes need to be created for the volume group. For this example,
I chose 10G for /, 2G for swap, and will assign the rest to /home.

lvcreate --name root -L 10G voidvm
Logical volume "root" created.
lvcreate --name swap -L 2G voidvm

Logical volume "swap" created.
lvcreate --name home -1 100%FREE voidvm
Logical volume "home" created.

Next, create the filesystems. The example below uses XF'S as a personal preference
of the author. Any filesystem supported by GRUB| will work.

mkfs.xfs -L root /dev/voidvm/root
meta-data=/dev/voidvm/root isize=512 agcount=4,
agsize=655360 blks

mkfs.xfs -L home /dev/voidvm/home
meta-data=/dev/voidvm/home isize=512 agcount=4,
agsize=2359040 blks

mkswap /dev/voidvm/swap

Setting up swapspace version 1, size = 2 GiB (2147479552
bytes)

34

https://www.gnu.org/software/grub/manual/grub/grub.html#Features

12.3 System installation

Next, setup the chroot and install the base system.

mount /dev/voidvm/root /mnt
mkdir -p /mnt/home
mount /dev/voidvm/home /mnt/home

On a UEFI system, the EFI system partition also needs to be mounted.

+H*

mkfs.vfat /dev/sdal
mkdir -p /mnt/boot/efi
mount /dev/sdal /mnt/boot/efi

Copy the RSA keys from the installation medium to the target root directory:

+H*

mkdir -p /mnt/var/db/xbps/keys
cp /var/db/xbps/keys/* /mnt/var/db/xbps/keys/

Before we enter the chroot to finish up configuration, we do the actual install. Do
not forget to use the [appropriate repository URL| for the type of system you wish to
install.

xbps-install -Sy -R https://repo-default.voidlinux.org/
current -r /mnt base-system lvm2 cryptsetup grub

[*] Updating ‘https://repo-default.voidlinux.org/current/
x86_64 -repodata’

x86_64 -repodata: 1661KB [avg rate: 2257KB/s]

130 packages will be downloaded:

UEFI systems will have a slightly different package selection. The installation
command for a UEFI system will be as follows.

xbps-install -Sy -R https://repo-default.voidlinux.org/
current -r /mnt base-system cryptsetup grub-x86_64-efi
lvm2

When it’s done, we can enter the chroot with |'xchroot(1)‘ (from xtools) and finish
up the configuration. Alternatively, entering the chroot can be

xchroot /mnt
[xchroot /mnt]
[xchroot /mnt]
[xchroot /mnt]
[xchroot /mnt]

chown root:root /

chmod 755 /

passwd root

echo voidvm > /etc/hostname

H H H H

and, for glibc systems only:

[xchroot /mnt] # echo "LANG=en_US.UTF-8" > /etc/locale.
conf

[xchroot /mnt] # echo "en_US.UTF-8 UTF-8" >> /etc/default/
libc-locales
[xchroot /mnt] # xbps-reconfigure -f glibc-locales

35

https://man.voidlinux.org/xchroot.1

12.3.1 Filesystem configuration

The next step is editing /etc/fstab, which will depend on how you configured and
named your filesystems. For this example, the file should look like this:

<file system> <dir> <type> <options> <
dump> <pass>

tmpfs /tmp tmpfs defaults ,nosuid ,nodev O
0

/dev/voidvm/root / xfs defaults 0
0

/dev/voidvm/home /home xfs defaults 0
0

/dev/voidvm/swap swap swap defaults 0
0

UEFT systems will also have an entry for the EFI system partition.

/dev/sdail /boot/efi vfat defaults 0

12.3.2 GRUB configuration

Next, configure GRUB to be able to unlock the filesystem. Add the following line to
/etc/default/grub:

GRUB_ENABLE_CRYPTODISK=y

Next, the kernel needs to be configured to find the encrypted device. First, find
the UUID of the device.

[xchroot /mnt] # blkid -o value -s UUID /dev/sdal
135f3c06 -26a0-437f-a05e -287pb036440a4

Edit the GRUB_CMDLINE_LINUX_DEFAULT= line in /etc/default/grub and add
rd.lvm.vg=voidvm rd.luks.uuid=<UUID> to it. Make sure the UUID matches the
one for the sdal device found in the output of the blkid(8) command above. This
will be /dev/sda2 on EFI systems.

12.4 LUKS key setup

And now to avoid having to enter the password twice on boot, a key will be configured
to automatically unlock the encrypted volume on boot. First, generate a random key.

[xchroot /mnt] # dd bs=1 count=64 if=/dev/urandom of=/boot
/volume .key

64+0 records in

64+0 records out

64 bytes copied, 0.000662757 s, 96.6 kB/s

Next, add the key to the encrypted volume.

36

https://man.voidlinux.org/blkid.8

[xchroot /mnt] # cryptsetup luksAddKey /dev/sdal /boot/

volume . key
Enter any existing passphrase:

Change the permissions to protect the generated key.

[xchroot /mnt] # chmod 000 /boot/volume.key
[xchroot /mnt] # chmod -R g-rwx,o-rwx /boot

This keyfile also needs to be added to /etc/crypttab. Again, this will be
/dev/sda2 on EFI systems.

voidvm /dev/sdal /boot/volume.key luks

And then the keyfile and crypttab need to be included in the initramfs. Create
a new file at /etc/dracut.conf.d/10-crypt.conf with the following line

install_items+=" /boot/volume.key /etc/crypttab

12.5 Complete system installation

Next, install the boot loader to the disk.
[xchroot /mnt] # grub-install /dev/sda
Ensure an initramfs is generated:
[xchroot /mnt] # xbps-reconfigure -fa
Exit the chroot, unmount the filesystems, and reboot the system.
[xchroot /mnt] # exit

umount -R /mnt
reboot

37

13 Installing Void on a ZFS Root

Because the Void installer does not support ZFS, it is necessary to install via chroot.
Aside from a few caveats regarding bootloader and initramfs support, installing Void
on a ZFS root filesystem is not significantly different from any other advanced in-
stallation. ZFSBootMenu is a bootloader designed from the ground up to support
booting Linux distributions directly from a ZFS pool. However, it is also possible to
use traditional bootloaders with a ZFS root.

13.1 ZFSBootMenu

Although it will boot (and can be run atop) a wide variety of distributions, ZFS-
BootMenu officially considers Void a first-class distribution. ZFSBootMenu supports
native ZFS encryption, offers a convenient recovery environment that can be used to
clone prior snapshots or perform advanced manipulation in a pre-boot environment,
and will support booting from any pool that is importable by modern ZFS drivers.
The ZFSBootMenu documentation offers, among other content, several step-by-step
guides for installing a Void system from scratch. The UEFI guide| describes the proce-
dure of bootstrapping a Void system for modern systems. For legacy BIOS systems,
the syslinux guide provides comparable instructions.

13.2 Traditional bootloaders

For those that wish to forego ZFSBootMenu, it is possible to bootstrap a Void system
with another bootloader. To avoid unnecessary complexity, systems that use boot-
loaders other than ZFSBootMenu should plan to use a separate /boot that is located
on an ext4 or xfs filesystem.

13.2.1 Installation media

Installing Void to a ZFS root requires an installation medium with ZFS drivers. It is
possible to build a custom image from the official [void-mklive repository by provid-
ing the command-line option -p zfs to the mklive.sh script. However, for x86_64
systems, it may be more convenient to fetch a pre-built hrmpf image. These images,
maintained by a Void team member, are extensions of the standard Void live images
that include pre-compiled ZFS modules in addition to other useful tools.

13.2.2 Partition disks

After booting a live image with ZF'S support, [partition your disks| The considerations
in the partitioning guide apply to ZFS installations as well, except that

e The boot partition should be considered necessary unless you intend to use
gummiboot, which expects that your EFI system partition will be mounted at
/boot. (This alternative configuration will not be discussed here.)

e Aside from any EFT system partition, GRUB BIOS boot partition, swap or boot
partitions, the remainder of the disk should typically be a single partition with
type code BFOO that will be dedicated to a single ZFS pool. There is no benefit
to creating separate ZFS pools on a single disk.

As needed, format the EFI system partition using mkfs.viat(8) and the the boot
partition using mke2fs(8)| or mkfs.xfs(8). Initialize any swap space using mkswap(8).

38

https://zfsbootmenu.org
https://docs.zfsbootmenu.org/en/latest/guides/void-linux.html
https://docs.zfsbootmenu.org/en/latest/guides/void-linux.html
https://docs.zfsbootmenu.org/en/latest/guides/void-linux/uefi.html
https://docs.zfsbootmenu.org/en/latest/guides/void-linux/syslinux-mbr.html
https://github.com/void-linux/void-mklive
https://github.com/leahneukirchen/hrmpf/releases
https://man.voidlinux.org/mkfs.vfat.8
https://man.voidlinux.org/mke2fs.8
https://man.voidlinux.org/mkfs.xfs.8
https://man.voidlinux.org

It is possible to put Linux swap space on a ZFS zvol, although there may

be a

risk of deadlocking the kernel when under high memory pressure. This
guide

takes no position on the matter of swap space on a zvol. However, if you

wish

to use suspension-to-disk (hibernation), note that the kernel is not capable

of resuming from memory images stored on a zvol. You will need a dedi-
cated

swap partition to use hibernation. Apart from this caveat, there are no

special considerations required to resume a suspended image when using
a ZFS

root.

13.2.3 Create a ZFS pool

Create a ZFS pool on the partition created for it using zpool(8). For example, to
create a pool on /dev/disk/by-id/wwn-0x5000c500deadbeef -part3:

zpool create -f -o ashift=12 \

-0
-0
-0
-0
-0
-m

compression=1z4 \

acltype=posixacl \

xattr=sa \

relatime=on \

autotrim=on \

none zroot /dev/disk/by-id/wwn-0x5000c500deadbeef -
part3

Adjust the pool (‘-0f) and filesystem (‘-O¢) options as desired, and replace the
partition identifier wwn-0x5000c500deadbeef -part3 with that of the actual partition
to be used.

When adding disks or partitions to ZFS pools, it is generally advisable to

refer to them by the symbolic links created in /dev/disk/by-id or (on
UEFI

systems) /dev/disk/by-partuuid so that ZFS will identify the right

partitions even if disk naming should change at some point. Using tradi-
tional

device nodes like /dev/sda3 may cause intermittent import failures.

Next, export and re-import the pool with a temporary, alternate root path:

zpool export zroot
zpool import -N -R /mnt zroot

39

https://man.voidlinux.org/zpool.8

13.2.4 Create initial filesystems

The filesystem layout on your ZFS pool is flexible. However, it is customary to put
operating system root filesystems ("boot environments") under a ROOT parent:

zfs create -o mountpoint=none zroot/R0OOT
zfs create -o mountpoint=/ -o canmount=noauto zroot/ROOT
/void

Setting canmount=noauto on filesystems with mountpoint=/ is useful because it
permits the creation of multiple boot environments (which may be clones of a common
Void installation or contain completely separate distributions) without fear that ZFS
auto-mounting will attempt to mount one over another.

To separate user data from the operating system, create a filesystem to store home
directories:

zfs create -o mountpoint=/home zroot/home

Other filesystems may be created as desired.

13.2.5 Mount the ZFS hierarchy

All ZFS filesystems should be mounted under the /mnt alternate root established by
the earlier re-import. Mount the manual-only root filesystem before allowing ZFS to
automatically mount everything else:

zfs mount zroot/RO0T/void
zfs mount -a

At this point, the entire ZFS hierarchy should be mounted and ready for instal-
lation. To improve boot-time import speed, it is useful to record the current pool
configuration in a cache file that Void will use to avoid walking the entire device
hierarchy to identify importable pools:

mkdir -p /mnt/etc/zfs
zpool set cachefile=/mnt/etc/zfs/zpool.cache zroot

Mount non-ZFS filesystems at the appropriate places. For example, if /dev/sda2
holds an ext4 filesystem that should be mounted at /boot and /dev/sdal is the EFI
system partition:

mkdir -p /mnt/boot

mount /dev/sda2 /mnt/boot

mkdir -p /mnt/boot/efi

mount /dev/sdal /mnnt/boot/efi

40

13.2.6 Installation

At this point, ordinary installation can proceed from the ["Base Installation™ section]
of the standard chroot installation guide. However, before following the
[tion™ instructions] make sure that the zfs package has been installed and dracut is
configured to identify a ZFS root filesystem:

[xchroot /mnt] # mkdir -p /etc/dracut.conf.d
[xchroot /mnt] # cat > /etc/dracut.conf.d/zol.conf <<EQOF

nofsck="yes"

add_dracutmodules+=" zfs "
omit_dracutmodules+=" btrfs resume "
EOF

[xchroot /mnt] # xbps-install zfs

Finally, follow the "Finalization" instructions and reboot into your new system.

41

14 ARM Devices

Void Linux provides packages and images for several ARM devices. Installing Void
on such devices can be done in several ways:

e [Pre-built Images} images that can be flashed directly onto an SD card or other
storage medium, but which give you a limited partition layout, and require
manual expansion if you wish to increase the size of the partitions;

e [Tarball installationt PLATFORMEFS and ROOTFS tarballs that can be ex-
tracted to a previously prepared partition scheme; and

e |[Chroot installationt follows most of the steps outlined in [the chroot guidel

This guide also outlines [configuration steps| that are mostly specific to such devices.
Since most of the commands in this guide will be run on external storage, it is
important to run sync(1) before removing the device.

14.1 Installation

If you are installing Void Linux on one of the ARM devices covered in the "[Supported]
[platforms" page, make sure to read its section thoroughly.

14.1.1 Pre-built images

The pre-built images provided are prepared for 2GB SD cards. After[downloading and]
an image, it can be uncompressed with unxz(1) and written to the relevant
media with cat(1), pv(1), or|dd(1). For example, to flash it onto an SD card located
at /dev/mmcblkO0:

$ unxz -k <image>.img.xz
dd if=<image>.img of=/dev/mmcblk0 bs=4M status=progress

After flashing, the root partition can optionally be expanded to fit the storage
device with cfdisk(8), fdisk(8), or another partitioning tool, and the filesystem can be
resized to fit the expanded partition with resize2fs(8).

14.1.2 Custom partition layout

Customizing an installation - for example, with a custom partition layout - requires
a more involved process. Two available options are:

e |Tarball installationf and

o [T TSI

To prepare the storage for these installation methods, it is necessary to partition the
storage medium and then mount the partitions at the correct mount points.

The usual partitioning scheme for ARM devices requires at least two partitions,
on a drive formatted with an MS-DOS partition table:

e one formatted as FAT32 with partition type Oc, which will be mounted on
/boot;

42

https://man.voidlinux.org/sync.1
https://man.voidlinux.org/unxz.1
https://man.voidlinux.org/cat.1
https://man.voidlinux.org/pv.1
https://man.voidlinux.org/dd.1
https://man.voidlinux.org/cfdisk.8
https://man.voidlinux.org/fdisk.8
https://man.voidlinux.org/resize2fs.8

e one that can be formatted as any file system that Linux can boot from, such as
ext4, which will be mounted on /. If you're using an SD card, you can create the
ext4 file system with the has_journal option - this disables journaling, which
might increase the drive’s life, at the cost of a higher chance of data loss.

There are a variety of tools available for partitioning, e.g. ctdisk(8).

To access the newly created file systems, it is necessary to mount them. This
guide will assume that the second partition will be mounted on /mnt, but you may
mount it elsewhere. To mount these filesystems, you can use the commands below,
replacing the device names with the appropriate ones for your setup:

mount /dev/mmcblkOp2 /mnt
mkdir /mnt/boot
mount /dev/mmcblkOpl /mnt/boot

Tarball installation First, [download and verify] a PLATFORMFS or ROOTFS

tarball for your desired platform and [prepare your storage medium| Then, unpack
the tarball onto the file system using tar(1):

tar xvfp <image>.tar.xz -C /mnt

Chroot installation It is also possible to perform a [chroot installation] using the
appropriate architecture and base packages, some of which are listed in the "[Supported]
[Platformy" section. Make sure to [prepare your storage medium| properly for the
device.

If doing this from a computer with an incompatible archtecture (such as
x86_64), install the gemu-user-static and binfmt-support packages and enable
the binfmt-support service before installing.

14.2 Configuration

Some additional configuration steps need to be followed to guarantee a working sys-
tem. Configuring a |graphical session| should work as normal.

14.2.1 Logging in

For the pre-built images and tarball installations, the root user password is
voidlinux.

14.2.2 fstab

The /boot partition should be added to /etc/fstab, with an entry similar to the
one below. It is possible to boot without that entry, but updating the kernel package
in that situation can lead to breakage, such as being unable to find kernel modules,
which are essential for functionality such as wireless connectivity. If you aren’t using
an SD card, replace /dev/mmcblkOpl with the appropriate device path.

/dev/mmcblkOpl /boot vfat defaults 0 O

43

https://man.voidlinux.org/cfdisk.8
https://man.voidlinux.org/tar.1

14.2.3 System time

Several of the ARM devices supported by Void Linux don’t have battery powered real
time clocks (RTCs), which means they won’t keep track of time once powered off. This
issue can present itself as HT'TPS errors when browsing the Web or using the package
manager. It is possible to set the time manually using the |date(1)| utility. In order to
fix this issue for subsequent boots, install and enable Furthermore,
it is possible to install the fake-hwclock package, which provides the fake-hwclock
service. fake-hwclock(8)| periodically stores the current time in a configuration file
and restores it at boot, leading to a better initial approximation of the current time,
even without a network connection.

Warning: Images from before 2020-03-16 might have an issue where the installa-
tion of the chrony package, the default NTP daemon, is incomplete, and the system
will be missing the chrony user. This can be checked in the output of the getent(1)
command, which will be empty if it doesn’t exist:

$ getent group chrony
chrony:x:997

In order to fix this, it is necessary to reconfigure the chrony package using xbps-
reconfigure(1).

14.2.4 Graphical session

The x£86-video-fbturbo package ships a modified version of the [DDX Xorg driver]
found in the xf86-video-fbdev package, which is optimized for ARM devices. This
can be used for devices which lack more specific drivers.

44

https://man.voidlinux.org/date.1
https://man.voidlinux.org/fake-hwclock.8
https://man.voidlinux.org/getent.1
https://man.voidlinux.org/xbps-reconfigure
https://man.voidlinux.org/xbps-reconfigure

15 Supported Platforms

15.1 Raspberry Pi

The rpi-kernel packages for all Raspberry Pi variants are built from the Raspberry
Pi Foundation’s kernel tree, which should enable all special functionality that isn’t
available with mainline kernels. The RPi kernel packages also have their own header
packages, rpi-kernel-headers. These packages should be installed if you want to
use any DKMS packages. Void ships rpi-base meta-packages that install the relevant
rpi-kernel and rpi-firmware packages. Together, these packages enable Wi-Fi and
Bluetooth functionality.

The [command Tine| parameters passed to the kernel are in the /boot/cmdline.txt
file. Some of the relevant parameters are documented in the official documentation.

15.1.1 Supported Models

’ Model \ Architecture ‘
1A, 1B,1A+, 1B+, Zero, Zero W, Zero WH | armv6l
2B armv7l
3 B, 3 A+, 3 B+, Zero 2W, 4 B, 400, CM4, 5 aarch64

It is possible to run the armv7l images on an RPi 3, as the RPi 3’s CPU

supports both the Armv8 and Armv7 instruction sets. The difference
between

these images is that the armv7l image provides a 32-bit system while the

aarch64 image provides a 64-bit system.

15.1.2 Raspberry Pi 5 Kernel

The rpib-kernel and rpib-kernel-headers packages provide a kernel and headers
optimized for the Raspberry Pi 5 with 16KB pages. To switch from the generic
rpi-kernel, install rpi5-kernel. This will remove rpi-kernel and replace it with
rpib-kernel.

Note: not all software is compatible with kernels that have larger page-
sizes.

View any known issues and report any compatibility problems found in
the

tracking issuel

15.1.3 Enabling hardware RNG device

By default, the HWRNG device is not used by the system, which may result in the
random devices taking long to seed on boot. This can be annoying if you want to
start sshd and expect to be able to connect immediately.

In order to fix this, install the rng-tools package and the rngd service,
which uses the /dev/hwrng device to seed /dev/random.

45

https://www.raspberrypi.com/documentation/computers/configuration.html#the-kernel-command-line
https://github.com/void-linux/void-packages/issues/48260
https://en.wikipedia.org/wiki/Hardware_random_number_generator

15.1.4 Graphical session

The mesa-dri package contains drivers for all the Raspberry Pi variants, and can be
used with the modesetting Xorg driver| or [Wayland|

15.1.5 Hardware

More configuration information can be found in the Raspberry Pi Foundation’s official
documentation. The raspi-config utility isn’t available for Void Linux, so editing
the /boot/config.txt file is usually required.

Audio To enable the soundchip, add dtparam=audio=on to /boot/config.txt.

Serial To enable serial console logins, the agetty-ttyAMAO service. See
securetty(5) for interfaces that allow root login. For configuration of the serial port
at startup, refer to the kernel command line in /boot/cmdline.txt - in particular,
the console=ttyAMAO, 115200 parameter.

15.1.6 I2C

To enable I12C, add device_tree_param=i2c_arm=on to /boot/config.txt, and
bcm2708.vc_i2c_override=1 to /boot/cmdline.txt. Then create a modules-
load(8) .conf file with the following content:

i2c -dev

Finally, install the i2c-tools package and use i2cdetect(8) to verify your config-
uration. It should show:

$ i2cdetect -1
i2c-1i2c bcm2835 I2C adapter I2C
adapter

15.1.7 Memory cgroup

The kernel from the rpi-kernel package disables the memory cgroup by defaultl

This breaks workloads which use containers. Therefore, if you want to use
containers on your Raspberry Pi, you need to enable memory cgroups by adding
cgroup_enable=memory to /boot/cmdline.txt.

46

https://www.raspberrypi.com/documentation/computers/configuration.html
https://www.raspberrypi.com/documentation/computers/configuration.html
https://man.voidlinux.org/securetty.5
https://en.wikipedia.org/wiki/I%C2%B2C
https://man.voidlinux.org/modules-load.8
https://man.voidlinux.org/modules-load.8
https://man.voidlinux.org/i2cdetect.8
https://github.com/raspberrypi/linux/commit/28aec65bb1743c9bfa53b036999f9835c889704e

16 musl

musl is a libc implementation which strives to be lightweight, fast, simple, and correct.
Void officially supports musl by using it in its codebase for all target platforms
(although binary packages are not available for 1686). Additionally, all compatible
packages in our official repositories are available with musl-linked binaries in addition
to their glibc counterparts.
Currently, there are nonfree and debug sub-repositories for musl, but no multilib
sub-repo.

16.1 Incompatible software

musl practices very strict and minimal standard compliance. Many commonly used
platform-specific extensions are not present. Because of this, it is common for software
to need modification to compile and/or function properly. Void developers work to
patch such software and hopefully get portability /correctness changes accepted into
the upstream projects.

Proprietary software usually supports only glibc systems, though sometimes such
applications are available as and can be run on a musl system. In particular,
the [proprietary NVIDIA drivers| do not support musl, which should be taken into
account when evaluating hardware compatibility.

16.1.1 glibc chroot

Software requiring glibc can be run in a glibe [chroot]

47

https://musl.libc.org/

17 Configuration

This section and its subsections provide information about configuring your Void
system.

48

18 Package Documentation

The most common media for documentation in Void Linux are

Many packages contain documentation in other formats, like HTML. This docu-
mentation can usually be found in a /usr/share/doc/<package> directory.

More extensive documentation may be split into separate *-doc packages, such
as julia-doc. This is often the case for programming languages, databases and big
software libraries.

In addition to documentation provided by upstream projects, packages may also
contain description of initial setup or usage specific to Void, provided by distribution
contributors. It will be located in /usr/share/doc/<package>/README.voidlinux.

49

19 Manual Pages

Many Void packages come with manual ('man’) pages. The default installation in-
cludes the mandoc manpage toolset, via the mdocml package.
The man(1) command can be used to show man pages:

$ man chroot

Every man page belongs to a particular *section*:
e 1: User commands (Programs)

e 2: System calls

Library calls

Special files (devices)

File formats and configuration files

Games

e 7: Overview, conventions, and miscellaneous

[)

° System management commands

Refer to man-pages(7)| for details.

There are some man pages which have the same name, but are used in different
contexts, and are thus in a different section. You can specify which one to use by
including the section number in the call to man:

$ man 1 printf

man can be configured via man.conf(5).

The mandoc toolset contains apropos(1), which can be used to search for man-
ual pages. apropos uses a database that can be generated and updated with the
makewhatis(8) command:

makewhatis
$ apropos chroot

chroot (1) - run command or interactive shell with special
root directory

xbps -uchroot (1) - XBPS wutility to chroot and bind mount
with Linux namespaces

xbps -uunshare (1) - XBPS utility to chroot and bind mount
with Linux user namespaces

chroot (2) - change root directory

The mdocml package provides a cron job to update the database daily,
/etc/cron.daily/makewhatis. You will need to install and enable a
for this functionality to be activated.

Development and POSIX manuals are not installed by default, but are available
via the man-pages-devel and man-pages-posix packages.

50

https://mandoc.bsd.lv/
https://man.voidlinux.org/man.1
https://man.voidlinux.org/man-pages.7
https://man.voidlinux.org/man.conf.5
https://man.voidlinux.org/apropos.1
https://man.voidlinux.org/makewhatis.8

19.1 Localized manual pages

It is also possible to use localized man pages from packages which provide their own
as well as those provided by the manpages-* packages. However, this can require
some configuration.

19.1.1 With mdocml

If mdocml is being used and the settings should be applied for all users, it is necessary
to add the relevant paths to man.conf(5). For example, German speakers would add
these two lines to their configuration file:

/usr/share/man/de
/usr/share/man/de.UTF -8

Alternatively, each user can export the MANPATH variable in their environment, as
explained in jman(1)k

o1

https://man.voidlinux.org/man.conf.5
https://man.voidlinux.org/man.1

20 Firmware

Void provides a number of firmware packages in the repositories. Some firmware is
only available if you have enabled the repository.

20.1 Microcode

Microcode is loaded onto the CPU or GPU at boot by the BIOS, but can be replaced
later by the OS itself. An update to microcode can allow a CPU’s or GPU’s behavior
to be modified to work around certain yet to be discovered bugs, without the need to
replace the hardware.

20.1.1 Intel

Install the Intel microcode package, intel-ucode. This package is in the nonfree repo,
which has to be After installing this package, it is necessary to regenerate
your For subsequent updates, the microcode will be added to the initramfs
automatically.

20.1.2 AMD

Install the AMD package, linux-firmware-amd, which contains microcode for both
AMD CPUs and GPUs. AMD CPUs and GPUs will automatically load the mi-
crocode, no further configuration required.

20.1.3 Verification

The /proc/cpuinfo file has some information under microcode that can be used to
verify the microcode update.

20.2 Removing firmware

By default, 1inuxX.Y packages and the base-system package install a number of
firmware packages. It is not necessary to remove unused firmware packages, but if
you wish to do so, you can configure XBPS to those packages, then remove
them.

52

21 Locales and Translations

For a list of currently enabled locales, run

$ locale -a

21.1 Enabling locales

To enable a certain locale, un-comment or add the relevant lines in
/etc/default/libc-locales and [force-reconfigure| the glibc-locales package.

21.2 Setting the system locale

Set LANG=xxxx in /etc/locale.conf.

21.3 Application locale

Some programs have their translations in a separate package that must be installed
in order to use them. You can for the desired language (e.g. "german" or
"portuguese") in the package repositories and install the packages relevant to the
applications you use. An especially relevant case is when installing individual packages
from the LibreOffice suite, such as 1libreoffice-writer, which require installing at
least one of the libreoffice-i18n-* packages to work properly. This isn’t necessary
when installing the libreoffice meta-package, since doing so will install the most
common translation packages.

53

22 Users and Groups

The juseradd(8), userdel(8) and jusermod(8) commands are used to add, delete and
modify users respectively. The passwd(1) command is used to change passwords.

The groupadd(8), groupdel(8) and |groupmod(8) commands are used to add, delete
and modify groups respectively. The jgroups(1)| command lists all groups a user be-
longs to.

22.1 Default shell
The default shell for a user can be changed with chsh(1):
$ chsh -s <shell> <user_name>

<shell> must be the path to the shell as specified by /etc/shells or the output
of chsh -1, which provides a list of installed shells.

22.2 sudo
sudo(8)| is installed by default, but might not be configured appropriately for your
needs. It is only necessary to configure sudo if you wish to use it.
Use visudo(8)| as root to edit the jsudoers(5)| file.
To create a superuser, uncomment the line
#/%wheel ALL=(ALL) ALL
and add users to the wheel group.
22.3 Default Groups
Void Linux defines a number of groups by default.

54

https://man.voidlinux.org/useradd.8
https://man.voidlinux.org/userdel.8
https://man.voidlinux.org/usermod.8
https://man.voidlinux.org/passwd.1
https://man.voidlinux.org/groupadd.8
https://man.voidlinux.org/groupdel.8
https://man.voidlinux.org/groupmod.8
https://man.voidlinux.org/groups.1
https://man.voidlinux.org/chsh.1
https://man.voidlinux.org/sudo.8
https://man.voidlinux.org/visudo.8
https://man.voidlinux.org/sudoers.5

Group

\ Description

root Complete access to the system.

bin Unused - present for historical reasons.

sys Unused - present for historical reasons.

kmem Ability to read from /dev/mem and /dev/port.

wheel Elevated privileges for specific system administration tasks.

tty Access to TTY-like devices: /dev/tty*, /dev/pts*, /dev/vcs*.
tape Access to tape devices.

daemon System daemons that need to write to files on disk.

floppy Access to floppy drives.

disk Raw access to /dev/sd* and /dev/loopx*.

1p Access to printers.

dialout | Access to serial ports.

audio Access to audio devices.

video Access to video devices.

utmp Ability to write to /var/run/utmp, /var/log/wtmp and /var/log/btmp.
adm Unused - present for historical reasons. This group was traditionally used for system monitor
cdrom Access to CD devices.

optical | Access to DVD/CD-RW devices.

mail Used by some mail packages, e.g. dma.

storage | Access to removable storage devices.

scanner | Ability to access scanners.

network | Unused - present for historical reasons.

kvm Ability to use KVM for virtual machines, e.g. via QEMU.
input Access to input devices: /dev/mouse*, /dev/eventx.

plugdev | Access to pluggable devices.

nogroup | System daemons that don’t need to own any files.

usbmon Access to /dev/usbmonx*.

users Ordinary users.

xbuilder | To use xbps-uchroot(1) with xbps-src.

55

23 Services and Daemons - runit

Void uses the runit(8) supervision suite to run system services and daemons.
Some advantages of using runit include:

e a small code base, making it easier to audit for bugs and security issues.

e each service is given a clean process state, regardless of how the service was
started or restarted: it will be started with the same environment, resource
limits, open file descriptors, and controlling terminals.

e a reliable logging facility for services, where the log service stays up as long as
the relevant service is running and possibly writing to the log.

If you don’t need a program to be running constantly, but would like it to run at

regular intervals, you might like to consider using a [cron daemon|

23.1 Section Contents
o PoUser S
e |Logging]

23.2 Service Directories

Each service managed by runit has an associated *service directory*.

A service directory requires only one file: an executable named run, which is
expected to exec a process in the foreground.

Optionally, a service directory may contain:

e an executable named check, which will be run to check whether the service is
up and available; it’s considered available if check exits with 0.

e an executable named finish, which will be run on shutdown/process stop.

e a conf file; this can contain environment variables to be sourced and referenced
in run.

e a directory named log; a pipe will be opened from the output of the run process
in the service directory to the input of the run process in the log directory.

When a new service is created, a supervise folder will be automatically created on
the first run.

23.2.1 Configuring Services

Most services can take configuration options set by a conf file in the service directory.
This allows service customization without modifying the service directory provided
by the relevant package.

Check the service file for how to pass configuration parameters. A few services
have a field like OPTS="-value ..." in their conf file.

To make more complex customizations, you should [edit the service

56

https://man.voidlinux.org/runit.8

23.2.2 Editing Services

To edit a service, first copy its service directory to a different directory name. Oth-
erwise, xbps-install(1)| can overwrite the service directory. Then, edit the new service
file as needed. Finally, the old service should be stopped and disabled, and the new
one should be started.

23.3 Managing Services
23.3.1 Runsvdirs

A runsvdir is a directory in /etc/runit/runsvdir containing enabled services in
the form of symlinks to service directories. On a running system, the current runsvdir
is accessible via the /var/service symlink.

The runit-void package comes with two runsvdirs, single and default:

e single just runs sulogin(8) and the necessary steps to rescue your system.

e default is the default runsvdir on a running system, unless [specified otherwise]
[by the kernel command linel

Additional runsvdirs can be created in /etc/runit/runsvdir/.
See runsvdir(8) and runsvchdir(8) for further information.

Booting A Different runsvdir To boot a runsvdir other than default, the name
of the desired runsvdir can be added to the [kernel command-linel As an example,
adding single to the kernel command line will boot the single runsvdir.

23.3.2 Basic Usage

To start, stop, restart or get the status of a service:

sV up <services>

sv down <services>

sv restart <services>
sv status <services>

H H H H

The <services> placeholder can be:
e Service names (service directory names) inside the /var/service/ directory.
e The full paths to the services.

For example, the following commands show the status of a specific service and of all
enabled services:

sv status dhcpcd
sv status /var/service/x*

See sv(8)| for further information.

57

https://man.voidlinux.org/xbps-install.1
https://man.voidlinux.org/sulogin.8
https://man.voidlinux.org/runsvdir.8
https://man.voidlinux.org/runsvchdir.8
https://man.voidlinux.org/sv.8

Enabling Services Void Linux provides service directories for most daemons in
/etc/sv/.

To enable a service on a booted system, create a symlink to the service directory
in /var/service/:

1n -s /etc/sv/<service> /var/service/

If the system is not currently running, the service can be linked directly into the

default [runsvdirt
1n -s /etc/sv/<service> /etc/runit/runsvdir/default/

This will automatically start the service. Once a service is linked it will always
start on boot and restart if it stops, unless administratively downed.

To prevent a service from starting at boot while allowing runit to manage it, create
a file named down in its service directory:
touch /etc/sv/<service>/down

The down file mechanism also makes it possible to disable services that are enabled
by default, such as the [agetty(8) services for ttys 1 to 6. This way, package updates

which affect these services (in this case, the runit-void package) won’t re-enable
them.

Disabling Services To disable a service, remove the symlink from the running
runsvdir:

rm /var/service/<service>

Or, for example, from the default runsvdir, if either the specific runsvdir, or the
system, is not currently running:

rm /etc/runit/runsvdir/default/<service>

Testing Services To check if a service is working correctly when started by the
service supervisor, run it once before fully enabling it:

touch /etc/sv/<service>/down
1n -s /etc/sv/<service> /var/service/

sv once <service>

If everything works, remove the down file to enable the service.

58

https://man.voidlinux.org/agetty.8

24 Per-User Services

Sometimes it can be nice to have user-specific runit services. For example, you might
want to open an ssh tunnel as the current user, run a virtual machine, or regularly run
daemons on your behalf. The most common way to do this is to create a system-level
service that runs runsvdir(8)| as your user, in order to start and monitor the services
in a personal services directory.

For example, you could create a service called /etc/sv/runsvdir-<username>
with the following run script, which should be executable:

#!/bin/sh

export USER="<username>"
export HOME="/home/<username >"

groups="$(id -Gn "$USER" | tr > > 2:’)"
svdir="$HOME/service"

exec chpst -u "$USER: $groups" runsvdir "$svdir"

In this example chpst(8)|is used to start a new runsvdir(8) process as the specified
user. [chpst(8) does not read groups on its own, but expects the user to list all required
groups separated by a :. The id and tr pipe is used to create a list of all the user’s
groups in a way |chpst(8) understands it. Note that we export $USER and $HOME
because some user services may not work without them.

The wuser can then create new services or symlinks to them in the
/home/<username>/service directory. To control the services using the sv(8) com-
mand, the user can specify the services by path, or by name if the SVDIR environment
variable is set to the user’s services directory. This is shown in the following examples:

$ sv status “/service/x*

run: /home/duncan/service/gpg-agent: (pid 901) 33102s
run: /home/duncan/service/ssh-agent: (pid 900) 33102s
$ SVDIR="/service sv restart gpg-agent

ok: run: gpg-agent: (pid 19818) Os

It may be convenient to export the SVDIR=/service variable in your shell profile.

59

https://man.voidlinux.org/runsvdir.8
https://man.voidlinux.org/chpst.8
https://man.voidlinux.org/runsvdir.8
https://man.voidlinux.org/chpst.8
https://man.voidlinux.org/chpst.8
https://man.voidlinux.org/sv.8

25 Logging
25.1 Syslog

The default installation comes with no syslog daemon. However, there are syslog
implementations available in the Void repositories.

25.1.1 Socklog

socklog(8) is a syslog implementation from the author of runit(8). Use socklog if you're
not sure which syslog implementation to use. To enable it, install the socklog-void
package and enable the socklog-unix and nanoklogd services. Ensure no other
syslog daemon is running.

The logs are saved in sub-directories of /var/log/socklog/, and svlogtail can
be used to access them conveniently.

The ability to read logs is limited to root and users who are part of the socklog

group.

25.1.2 Other syslog daemons

The Void repositories also include packages for rsyslog and metalog.

60

https://man.voidlinux.org/socklog.8
https://man.voidlinux.org/runit.8

26 rc.conf, rc.local and rc.shutdown

The files /etc/rc.conf, /etc/rc.local and /etc/rc.shutdown can be used to
configure certain parts of your Void system. rc.conf is often configured by
void-installer.

26.1 rc.conf

Sourced in runit stages 1 and 3. This file can be used to set variables, including the
following:

26.1.1 KEYMAP

Specifies which keymap to use for the Linux console. Available keymaps are listed in
/usr/share/kbd/keymaps. For example:

KEYMAP=fr

For further details, refer to loadkeys(1).

26.1.2 HARDWARECLOCK

Specifies whether the hardware clock is set to UTC or local time.

By default this is set to utc. However, Windows sets the hardware clock to local
time, so if you are dual-booting with Windows, you need to either configure Windows
to use UTC, or set this variable to localtime.

For further details, refer to hwclock(8).

26.1.3 FONT

Specifies which font to use for the Linux console. Available fonts are listed in
/usr/share/kbd/consolefonts. For example:

FONT=eurlatgr
For further details, refer to setfont(8).

26.2 rc.local

Sourced in runit stage 2. A shell script which can be used to specify configuration to
be done prior to login.

26.3 rc.shutdown

Sourced in runit stage 3. A shell script which can be used to specify tasks to be done
during shutdown.

61

https://man.voidlinux.org/loadkeys.1
https://man.voidlinux.org/hwclock.8
https://man.voidlinux.org/setfont.8

27 Cron

cron is a daemon for running programs at regular intervals. The programs and in-
tervals are specified in a crontab file, which can be edited with |crontab(1). Running
crontab -e as the superuser will edit the system crontab; otherwise, it will edit the
crontab for the current user.

By default, a cron daemon is not installed. However, multiple cron implementa-
tions are available, including |cronie), dcron, fcron/ and more.

Once you have chosen and installed an implementation, the corresponding
service. There is also a generic crond service which is maintained by the alternatives
system, but there is no real benefit in using it and just makes your setup harder to
follow.

As an alternative to the standard cron implementations, you can use
snooze(1l) together with the snooze-hourly, snooze-daily, snooze-weekly and
snooze-monthly services, which are provided by the snooze package for this purpose.
Each of these services execute scripts in the respective /etc/cron.* directories.

62

https://en.wikipedia.org/wiki/Cron
https://man.voidlinux.org/crontab.1
https://github.com/cronie-crond/cronie/
http://www.jimpryor.net/linux/dcron.html
http://fcron.free.fr/
https://man.voidlinux.org/snooze.1

28 Solid State Drives

Post installation, you will need to enable TRIM for solid state drives. You can check
which devices allow TRIM by running:

$ 1lsblk --discard

If the DISC-GRAN (discard granularity) and DISC-MAX (discard maximum
bytes) columns are non-zero, that means the block device has TRIM support. If
your solid state drive partition does not show TRIM support, please verify that you
chose a file system with TRIM support (ext4, Btrfs, F2FS, etc.). Note that F2FS
requires kernel 4.19 or above to support TRIM.

To run TRIM one-shot, you can run ‘fstrim(8)‘ manually. For example, if your /
directory is on an SSD:

fstrim /
To automate running TRIM, use cron or add the discard option to /etc/fstab.
28.1 Periodic TRIM with cron
Add the following lines to /etc/cron.weekly/fstrim:
#!/bin/sh
fstrim /
Finally, make the script executable:

chmod u+x /etc/cron.weekly/fstrim

28.2 Continuous TRIM with fstab discard

You can use either continuous or periodic TRIM, but usage of continuous TRIM is
discouraged if you have an SSD that doesn’t handle NCQ correctly. Refer to the
kernel blacklist.
Edit /etc/fstab and add the discard option to block devices that need TRIM.
For example, if /dev/sdal was an SSD partition, formatted as ext4, and mounted
at /:

/dev/sdal / ext4 defaults,discard 0 1

28.3 LVM

To enable TRIM for LVM’s commands (‘lvremove‘, lvreduce, etc.), open
/etc/lvm/lvm. conf, uncomment the issue_discards option, and set it to 1:

issue_discards=1

63

https://man.voidlinux.org/fstrim.8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/ata/libata-core.c?h=v5.8&id=bcf876870b95592b52519ed4aafcf9d95999bc9c#n3774

28.4 LUKS

Warning: Before enabling discard for your LUKS partition, please be aware of the
security implications).

To open an encrypted LUKS device and allow discards to pass through, open the
device with the -allow-discards option:

cryptsetup luksOpen --allow-discards /dev/sdaX luks

28.4.1 Non-root devices

Edit /etc/crypttab and set the discard option for devices on the SSD. For example,
if you have a LUKS device with the name externaldrivel, device /dev/sdb2, and
password none:

externaldrivel /dev/sdb2 none luks ,discard

28.4.2 Root devices

If your root device is on LUKS, add rd.luks.allow-discards to
CMDLINE_LINUX_DEFAULT. In the case of GRUB, edit /etc/default/grub:

GRUB_CMDLINE_LINUX_DEFAULT="rd.luks.allow-discards"
Then update GRUB:

update-grub

28.4.3 Verifying configuration
To verify that you have configured TRIM correctly for LUKS, reboot and run:

dmsetup table /dev/mapper/crypt_dev --showkeys

If this command output contains the string allow_discards, you have successfully
enabled TRIM on your LUKS device.

28.5 ZFS

Before running trim on a ZFS pool, ensure that all devices in the pool support it:
zpool get all | grep trim

If the pool allows autotrim (set off by default), you can trim the pool periodically
or automatically. To one-shot trim yourpoolname:

zpool trim yourpoolname

64

https://wiki.archlinux.org/index.php/Dm-crypt/Specialties#Discard/TRIM_support_for_solid_state_drives_(SSD

28.5.1 Periodic TRIM

Add the following lines to /etc/cron.daily/ztrim:

#!/bin/sh
zpool trim yourpoolname

Finally, make the script executable:

chmod u+x /etc/cron.daily/ztrim

28.5.2 Autotrim

To set autotrim for yourpoolname, run:

zpool set autotrim=on yourpoolname

65

29 Security

There are several ways you can make your installation more secure. This section
explores some of them.

29.1 Section Contents
.

66

30 AppArmor

AppArmor is a mandatory access control mechanism (like SELinux). It can constrain
programs based on pre-defined or generated policy definitions.

Void ships with some default profiles for several services, such as dhcpcd and
wpa_supplicant. Container runtimes such as LXC and podman integrate with Ap-
pArmor for better security for container payloads.

To use AppArmor on a system, one must:

1. Install the apparmor package.

2. Set apparmor=1 security=apparmor on the kernel commandline.

To accomplish the second step, consult [the documentation on how to modify the]
[kernel cmdlind

The APPARMOR variable in /etc/default/apparmor controls how profiles will be
loaded at boot, the value is set to complain by default and corresponds to AppArmor
modes (‘disable‘, complain, enforce).

AppArmor tools aa-genprof(8) and aa-logprof(8) require either configured
or a running auditd(8)| service.

67

https://man.voidlinux.org/aa-genprof.8
https://man.voidlinux.org/aa-logprof.8
https://man.voidlinux.org/auditd.8

31 Date and Time

To view your system’s current date and time information, as well as make direct
changes to it, use date(1).

31.1 Timezone

The default system timezone can be set by linking the timezone file to
/etc/localtime:

1n -sf /usr/share/zoneinfo/<timezone> /etc/localtime

Note: If the variable TIMEZONE is set in /etc/rc.conf, it should be

removed or commented out, as this will override what has been set with
1In on

reboot.

To change the timezone on a per user basis, the TZ variable can be exported from
your shell’s profile:

export TZ=<timezone>

Note that setting the *timezone* does not set the *time* (or date); instead, it
simply specifies an offset from UTC, as described in timezone(3).

31.2 Hardware clock

By default, the hardware clock in Void is stored as UTC. Windows does not use UTC
by default, and if you are dual-booting, this will conflict with Void. You can either
change Windows to use UTC, or change Void Linux to use localtime by setting the
HARDWARECLOCK variable in /etc/rc.conf:

export HARDWARECLOCK=localtime

For more details, see hwclock(8).

31.3 NTP

To maintain accuracy of your system’s clock, you can use the Network Time Protocol
(NTP).

Void provides packages for the following NTP daemons: NTP, OpenNTPD,
Chrony and ntpd-rs.

Once you have installed an NTP daemon, you can [enable the service| for it, either
through its own service or the ntpd service managed by xbps-alternatives(1).

31.3.1 NTP

NTP is the official reference implementation of the Network Time Protocol.
The ntp package provides NTP and the isc-ntpd service.
For further information, visit the NTP site.

68

https://man.voidlinux.org/date.1
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://man.voidlinux.org/timezone.3
https://man.voidlinux.org/hwclock.8
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://man.voidlinux.org/xbps-alternatives.1
https://www.ntp.org/

31.3.2 OpenNTPD

OpenNTPD focuses on providing a secure, lean NTP implementation which "just
works" with reasonable accuracy for a majority of use-cases.

The openntpd package provides OpenNTPD and the openntpd service.

For further information, visit the OpenNTPD site.

31.3.3 Chrony

Chrony is designed to work well in a variety of conditions; it can synchronize faster
and with greater accuracy than NTP.

The chrony package provides Chrony and the chronyd service.

The Chrony site provides a brief overview of its advantages over NTP| as well as
a detailed feature comparison between Chrony, NTP and OpenNTPD.

31.3.4 ntpd-rs

ntpd-rs is a full-featured NTP server and client implementation, including NTS sup-
port.

The ntpd-rs package provides ntpd-rs and the ntpd-rs service.

For further information and migration guides from other implementations, visit
the ntpd-rs docs!.

69

https://www.openntpd.org/
https://chrony-project.org/faq.html#_how_does_chrony_compare_to_ntpd
https://chrony-project.org/comparison.html
https://docs.ntpd-rs.pendulum-project.org/

32 Kernel

32.1 Kernel series

Void Linux provides many kernel series in the default repository. These are named
linux<x>.<y>: for example, linux4.19. You can query for all available kernel series
by running:

$ xbps-query --regex -Rs ’~1linux[0-9.]1+-[0-9._]+’

The linux meta package, installed by default, depends on one of the kernel pack-
ages, usually the package containing the latest mainline kernel that works with all
DKMS modules. Newer kernels might be available in the repository, but are not nec-
essarily considered stable enough to be the default; use these at your own risk. If you
wish to use a more recent kernel and have DKMS modules that you need to build,
install the relevant 1inux<x>.<y>-headers package, then use xbps-reconfigure(1) to
reconfigure the 1inux<x>.<y> package you installed. This will build the DKMS mod-
ules.

32.2 Removing old kernels

When updating the kernel, old versions are left behind in case it is necessary to roll
back to an older version. Over time, old kernel versions can accumulate, consuming
disk space and increasing the time taken by DKMS module updates. Furthermore, if
/boot is a separate partition and fills up with old kernels, updating can fail or result
in incomplete initramfs filesystems to be generated and result in kernel panics if they
are being booted. Thus, it may be advisable to clean old kernels from time to time.

Removing old kernels is done using the vkpurge(8) utility. vkpurge comes pre-
installed on every Void Linux system. This utility runs the necessary when
removing old kernels. Note that vkpurge does not remove kernel *packages™, only
particular *kernels™*.

32.3 Removing the default kernel series

If you’ve installed a kernel package for a series other than the default, and want to
remove the default kernel packages, you should install the 1inux-base package or
mark it as a manual package|in case it is already installed. After this procedure, you
can remove the default kernel packages with xbps-remove(1). It might be necessary
to add linux and linux-headers to an ignorepkg entry in xbps.d(5), since base
packages can depend on them.

32.4 Switching to another kernel series

If you’d like to use the 1inux-1ts or linux-mainline kernel series instead of the de-
fault 1inux, first install the desired series metapackage (and the linux-1ts-headers
or linux-mainline-headers metapackage if needed). Then you can add linux and
linux-headers to an ignorepkg entry in xbps.d(5) and uninstall those packages.

32.5 Changing the default initramfs generator

By default, Void Linux uses dracut| to prepare initramfs images for installed kernels.
Alternatives such as mkinitcpio| are available. Each initramfs generator registers an

70

https://man.voidlinux.org/xbps-reconfigure.1
https://man.voidlinux.org/vkpurge.8
https://man.voidlinux.org/xbps-pkgdb.1
https://man.voidlinux.org/xbps-remove.1
https://man.voidlinux.org/xbps.d.5
https://man.voidlinux.org/xbps.d.5
https://man.voidlinux.org/dracut.8
https://man.voidlinux.org/mkinitcpio.8

XBPS alternative| in the initramfs group to link its to be used when
creating or removing initramfs images for a given kernel.

To replace dracut with, *e.g.*, mkinitcpio, install the mkinitcpio package; con-
firm that mkinitcpio appears in the list of available alternatives by running

$ xbps-alternatives -1 -g initramfs
Issue the command
xbps-alternatives -s mkinitcpio

to replace the dracut kernel hooks with those provided by mkinitcpio. With sub-
sequent kernel updates (or updates to DKMS packages that trigger initramfs regen-
eration), mkinitepio will be used instead of dracut to prepare initramfs images. To
force images to regenerate, reconfigure your kernel packages by invoking

xbps-reconfigure -f linux<x>.<y>

for each linux<x>.<y> package that is currently installed.

32.6 cmdline

The kernel, the initial RAM disk (initrd) and some system programs can be configured
at boot by kernel command line arguments. The parameters understood by the
kernel are explained in the kernel-parameters documentation/ and by bootparam(7).
Parameters understood by dracut can be found in |dracut.cmdline(7).

Once the system is booted, the current kernel command line parameters can be
found in the /proc/cmdline file. Some system programs can change their behavior
based on the parameters passed in the command line, which is what happens when
[booting a different runsvdir] for example.

There are different ways of setting these parameters, some of which are explained
below.

32.6.1 GRUB

Kernel command line arguments can be added through the GRUB bootloader by
editing /etc/default/grub, changing the GRUB_CMDLINE_LINUX_DEFAULT variable
and then running update-grub.

32.6.2 dracut

Dracut offers a [‘kernel cmdline’ configuration option and |‘—kernel-cmdline’
command-line option that will encode command-line arguments directly in the
initramfs image. When dracut is used to create a UEFI executable, arguments set
with these options will be passed to the kernel. However, when an ordinary initramfs
is produced, these options will *not* be passed to the kernel at boot. Instead, they
will be written to a configuration file in /etc/cmdline.d within the image. While
dracut parses this configuration to control its own boot-time behavior, the kernel itself
will not be aware of anything set via this mechanism.

After modifying a dracut configuration, the initramfs to ensure that it
includes the changes.

71

https://man.voidlinux.org/xbps-alternatives.1
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://man.voidlinux.org/bootparam.7
https://man.voidlinux.org/dracut.cmdline.7
https://man.voidlinux.org/dracut.conf.5
https://man.voidlinux.org/dracut.8
https://man.voidlinux.org/dracut.8

32.7 Kernel hardening

Void Linux ships with some kernel security options enabled by default. This was orig-
inally provided by kernel command line arguments slub_debug=P page_poison=1,
but since kernel series 5.3, these have been replaced with init_on_alloc and
init_on_free (see [this commit].

Void’s kernels come with the init_on_alloc option enabled by default where
available (i.e. 1inux5.4 and greater). In most cases you should usually not disable it,
as it has a fairly minimal impact on performance (within lenabled manually by passing
init_on_free=1 on the kernel command line. If you need to disable init_on_alloc,
you can do that similarly by passing init_on_alloc=0.

There is a chance that your existing system still has the old options enabled.
They still work in newer kernels, but have a performance impact more in line with
init_on_free=1. On older hardware this can be quite noticeable. If you are running
a kernel series older than 5.4, you can keep them (or add them) for extra security at
the cost of speed; otherwise you should remove them.

32.8 Kernel modules

Kernel modules are typically drivers for devices or filesystems.

32.8.1 Loading kernel modules during boot

Normally the kernel automatically loads required modules, but sometimes it may be
necessary to explicitly specify modules to be loaded during boot.

To load kernel modules during boot, a .conf file like
/etc/modules-load.d/virtio.conf needs to be created with the contents:

load virtio-net
virtio-net

32.8.2 Blacklisting kernel modules

Blacklisting kernel modules is a method for preventing modules from being loaded
by the kernel. There are two different methods for blacklisting kernel modules, one
for modules loaded by the initramfs and one for modules loaded after the initramfs
process is done. Modules loaded by the initramfs have to be blacklisted in the initramfs
configuration.

To blacklist modules loaded after the initramfs process, create a .conf file, like
/etc/modprobe.d/radeon. conf, with the contents:

blacklist radeon

Blacklisting modules in the initramfs After making the necessary changes to
the configuration files, the initramfs needs to be for the changes to take
effect on the next boot.

72

https://github.com/torvalds/linux/commit/6471384af

dracut Dracut can be configured to not include kernel modules through a con-
figuration file. To blacklist modules from being included in a dracut initramfs, create
a .conf file, like /etc/dracut.conf.d/radeon.conf, with the contents:

omit_drivers+=" radeon "

mkinitcpio To blacklist modules from being included in a mkinitcpio initramfs a
.conf file needs to be created like /etc/modprobe.d/radeon. conf with the contents:

blacklist radeon

32.9 Kernel hooks

Void Linux provides directories for kernel hooks in
/etc/kernel.d/pre-install,post-install,pre-remove,post-remove.

These hooks are used to update the boot menus for bootloaders like grub,
gummiboot and lilo.

32.9.1 Install hooks

The pre,post-install hooks are executed by xbps-reconfigure(1) when configuring
a Linux kernel, such as building its initramfs. This happens when a kernel series is
installed for the first time or updated, but can also be run manually:

xbps-reconfigure --force linux<x>.<y>

If run manually, they serve to apply initramfs configuration changes to the next
boot.
32.9.2 Remove hooks

The pre,post-remove hooks are executed by [vkpurge(8) when removing old kernels.

32.10 Dynamic Kernel Module Support (DKMS)

There are kernel modules that are not part of the Linux source tree that are built at
install time using DKMS and The available modules can be listed by
searching for dkms in the package repositories.

DKMS build logs are available in /var/1ib/dkms/.

73

https://man.voidlinux.org/xbps-reconfigure.1
https://man.voidlinux.org/vkpurge.8

33 Power Management

33.1 acpid

The acpid service for acpid(8) is installed and, if Void was installed from a live
image using the local source, will be enabled by default. ACPI events are handled by
/etc/acpi/handler.sh, which uses zzz(8) for suspend-to-RAM events.

33.2 elogind

The elogind service is provided by the elogind package. By default, elogind(8)| lis-
tens for, and processes, ACPI events related to lid-switch activation and the *power*,
suspend and *hibernate* keys. This will conflict with the acpid service if it is
installed and enabled. Either disable acpid when enabling elogind, or configure
elogind to ignore ACPI events in logind.conf(5). There are several configuration
options, all starting with the keyword Handle, that should be set to ignore to avoid
interfering with acpid.

To run loginctl poweroff and loginctl reboot without root privileges,
polkit must be installed.

33.3 Power Saving - tlp

Laptop battery life can be extended by using tlp(8). To use it, install the t1p package,
and the tlp service. Refer to fthe TLP documentation| for details.

74

https://man.voidlinux.org/acpid.8
https://man.voidlinux.org/zzz.8
https://man.voidlinux.org/elogind.8
https://man.voidlinux.org/logind.conf.5
https://man.voidlinux.org/tlp.8
https://linrunner.de/tlp/

34 Network

Network configuration in Void Linux can be done in several ways. The default instal-
lation comes with the [dhcped(8)| service enabled.

34.1 Interface Names

Newer versions of udev(7) no longer use the traditional Linux naming scheme for
interfaces (‘eth0‘, eth1, wlano0, ...).

This behavior can be reverted by adding net.ifnames=0 to the

34.2 Static Configuration

A simple way to configure a static network at boot is to add the necessary ip(8)
commands to the /etc/rc.local file

ip link set dev ethO up
ip addr add 192.168.1.2/24 brd + dev ethO
ip route add default via 192.168.1.1

34.3 Bridge Interfaces

To configure bridge interfaces at boot, the /etc/rc.local file can be used to run
ip(8)| commands to add the bridge br0 and set it as the master for the ethO interface
as example:

ip link add name br0O type bridge
ip link set ethO master brO
ip link set ethO up

34.4 dhcpcd

To run |dheped(8) on all interfaces, enable the dhcped service.
To run dhcpced only on a specific interface, copy the dhcpcd-ethO service and
modify it to match your interface:

$ ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue
state UNKNOWN mode DEFAULT group default qgqlen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: enp3s0: <BROADCAST ,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc pfifo_fast state UP mode DEFAULT group default
glen 1000

link/ether ff:ff:ff:ff:ff:ff brd ff:ff:ff:f

cp -R /etc/sv/dhcpcd-ethO /etc/sv/dhcpcd-enp3s0

sed -i ’s/eth0/enp3s0/’ /etc/sv/dhcpcd-enp3s0/run

1In -s /etc/sv/dhcpcd-enp3s0 /var/service/

+H*

For more information on configuring dhcped, refer to dheped.conf(5)

(0]

https://man.voidlinux.org/dhcpcd.8
https://man.voidlinux.org/udev.7
https://man.voidlinux.org/ip.8
https://man.voidlinux.org/ip.8
https://man.voidlinux.org/dhcpcd.8
https://man.voidlinux.org/dhcpcd.conf.5

34.5 Wireless

Before using wireless networking, use rfkill(8)| to check whether the relevant interfaces
are soft- or hard-blocked.

Void provides several ways to connect to wireless networks:

e [wpa supplicant|
o [fwdl

o |NetworkManager|

e [ConnMan

76

https://man.voidlinux.org/rfkill.8

35 Firewalls

35.1 iptables

By default, the iptables package is installed on the base system. It provides [ipta-
bles(8)/ipbtables(8). The related services use the /etc/iptables/iptables.rules
and /etc/iptables/ip6tables.rules ruleset files, which must be created by the
system administrator.

Two example rulesets are provided in the /etc/iptables directory: empty.rules
and simple_firewall.rules.

35.1.1 Applying the rules at boot

To apply iptables rules at runit stage 1, install the runit-iptables package. This
adds a core-service which restores the iptables.rules and ip6tables.rules rule-
sets.

Alternatively, to apply these rules at stage 2, add the following to /etc/rc.local:

if [-e /etc/iptables/iptables.rules]; then
iptables-restore /etc/iptables/iptables.rules
fi

if [-e /etc/iptables/ip6tables.rules]; then
ip6tables -restore /etc/iptables/ip6tables.rules
fi

After rebooting, check the active firewall rules:

iptables -L
ip6tables -L

35.1.2 Applying the rules at runtime

iptables comes with two runit services, iptables and ip6tables, to quickly flush
or restore the iptables.rules and ip6tables.rules rulesets. Once these services
are you can flush the rulesets by downing the relevant service, e.g.:

sv down iptables
and restore them by upping the relevant service, e.g.:

sv up ip6tables

35.2 nftables

nftables replaces iptables, ip6tables, arptables and ebtables (collectively re-
ferred to as xtables). The nftables wiki describes the main differences from the
iptables toolset.

To use nftables, install the nftables package, which provides nft(8).
It also provides iptables-translate(8)/ip6tables-translate(8) and iptables-restore-
translate(8)/ip6tables-restore-translate(8), which convert iptables rules to nftables
rules.

7

https://man.voidlinux.org/iptables.8
https://man.voidlinux.org/iptables.8
https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
https://wiki.nftables.org/wiki-nftables/index.php/Main_differences_with_iptables
https://man.voidlinux.org/nft.8
https://man.voidlinux.org/iptables-translate.8
https://man.voidlinux.org/iptables-restore-translate.8
https://man.voidlinux.org/iptables-restore-translate.8

35.2.1 Applying the rules at boot

To apply nftables rules at runit stage 1, install the runit-nftables package. This
adds a core-service which restores the ruleset in /etc/nftables.conf.

35.2.2 Applying the rules at runtime

The nftables package provides the nftables service, which uses rules from
/etc/nftables.conf. Once you the nftables service, to load the rules, run:

sv up nftables
To flush the rules, run:

sv down nftables

78

36 wpa supplicant

The wpa_supplicant package is installed by default on the base system. It includes
utilities to configure wireless interfaces and handle wireless security protocols. To use
wpa_ supplicant, you will need to enable fthe wpa supplicant service]

wpa_supplicant(8)] is a daemon that manages wireless interfaces
based on wpa_supplicant.conf(5)| configuration files. An extensive
overview of configuration options, including examples, can be found in
/usr/share/examples/wpa_supplicant/wpa_supplicant.conf.

wpa_ passphrase(8) helps create pre-shared keys for use in configuration files.
wpa_ cli(8)| provides a CLI for managing the wpa_supplicant daemon.

36.1 WPA-PSK
To use WPA-PSK, generate a pre-shared key with [wpa passphrase(8) and append

the output to the relevant wpa_supplicant.conf file:

wpa_passphrase <MYSSID> <passphrase> >> /etc/
wpa_supplicant/wpa_supplicant -<device_name>.conf

36.2 WPA-EAP

WPA-EAP is often used for institutional logins, notably eduroam. This does not use
PSK, but a password hash can be generated like this:

$ echo -n <passphrase> | iconv -t utfl6le | openssl md4

36.3 WEP

For WEP configuration, add the following lines to your device’s
wpa-supplicant.conf:

network={
ssid="MYSSID"
key_mgmt=NONE
wep_keyO0="YOUR AP WEP KEY"
wep_tx_keyidx=0
auth_alg=SHARED

36.3.1 The wpa_supplicant service

The wpa_supplicant service checks the following options in
/etc/sv/wpa_supplicant/conf:

e OPTS: Options to be passed to the service. Overrides any other options.

e CONF_FILE: Path to file to be used for configuration. Defaults to
/etc/wpa_supplicant/wpa_supplicant.conf.

79

https://man.voidlinux.org/wpa_supplicant.8
https://man.voidlinux.org/wpa_supplicant.conf.5
https://man.voidlinux.org/wpa_passphrase.8
https://man.voidlinux.org/wpa_cli.8
https://man.voidlinux.org/wpa_passphrase.8

e WPA_INTERFACE: Interface to be matched. May contain a wildcard; defaults to
all interfaces.

e DRIVER: Driver to use. See wpa_supplicant -h for available drivers.

If no conf file is found, the service searches for the following files in
/etc/wpa_supplicant:

e wpa_supplicant-<interface>.conf: If found, these files are bound to the
named interface.

e wpa_supplicant.conf: If found, this file is loaded and binds to all other inter-
faces found.

Once you are satisfied with your configuration, the wpa_supplicant service.

36.3.2 Using wpa_cli

When using wpa_cli to manage wpa_supplicant from the command line, be sure to
specify which network interface to use via the -i option, e.g.:

wpa_cli -i wlp2sO0

Not doing so can result in various wpa_cli commands (for example, scan and
scan_results) not producing the expected output.

80

37 IWD

IWD| (iNet Wireless Daemon) is a wireless daemon for Linux that aims to replace
[WPA supplicant]

37.1 Installation

Install the iwd package and enable the dbus and iwd services.

37.2 Usage

The command-line client iwctl(1)| can be used to add, remove, and configure network
connections. Commands can be passed as arguments; when run without arguments,
it provides an interactive session. To list available commands, run iwctl help, or
run iwctl and enter help at the interactive prompt.

By default, only the root user and those in the wheel group have permission to
operate iwctl.

37.3 Configuration

Configuration options and examples are described below. Consult the relevant manual
pages and the jupstream documentation for further information.

37.3.1 Daemon configuration

The main configuration file is located in /etc/iwd/main.conf. If it does not exist,
you may create it. It is documented in iwd.config(5)k

37.3.2 Network configuration

Network configuration, including examples, is documented in [iwd.network(5). IWD
stores information on known networks, and reads information on pre-provisioned net-
works from network configuration files located in /var/1ib/iwd; IWD monitors the
directory for changes. Network configuration filenames consist of the encoding of the
SSID followed by .open, .psk, or .8021x as determined by the security type.

As an example, a basic configuration file for a WPA2/PSK secured network would
be called <ssid>.psk, and it would contain the plain text password:

[Security]
Passphrase=<password>

37.4 Troubleshooting

By default, IWD will create and destroy the wireless interfaces (e.g. wlan0) that it
manages. This can interfere with udevd, which may attempt to rename the interface
using its rules for persistent network interface names. The following messages may
be printed to your screen as a symptom of this interference:

L 39.441723] udevd[1100]: Error changing net interface
name wlanO to wlp59s0: Device or resource busy
L 39.442472] udevd[1100]: could not rename interface ’3?
from ’wlan0’ to ’wlp59s0’: Device or resource busy

81

https://iwd.wiki.kernel.org/
https://man.voidlinux.org/iwctl.1
https://iwd.wiki.kernel.org/networkconfigurationsettings
https://man.voidlinux.org/iwd.config.5
https://man.voidlinux.org/iwd.network.5

A simple fix is to prevent IWD from manipulating the network interfaces
in this way by adding UseDefaultInterface=true to the [General] section of
/etc/iwd/main. conf.

An alternative approach is to disable the use of persistent network interface
names by udevd. This may be accomplished either by adding net.ifnames=0
to your kernel or by creating a symbolic link to /dev/null at
/etc/udev/rules.d/80-net-name-slot.rules to mask the renaming rule. This al-
ternative approach will affect the naming of all network devices.

82

38 NetworkManager

NetworkManager(8) is a daemon that manages Ethernet, Wi-Fi, and mobile broad-
band network connections. Install the NetworkManager package for the basic Net-
workManager utilities.

38.1 Starting NetworkManager

Before enabling the NetworkManager daemon, any other network management
services, such as|dhcped| [wpa supplicant] or wicd. These services all control network
interface configuration, and will interfere with NetworkManager.

Also ensure that the dbus service is and running. NetworkManager uses
dbus to expose networking information and a control interface to clients, and will fail
to start without it.

Finally, enable the NetworkManager service.

38.2 Configuring NetworkManager

Users of NetworkManager must belong to the network group.

The NetworkManager package includes a command line tool, nmcli(1), and a text-
based user interface, nmtui(1), to control network settings.

There are many other front-ends to NetworkManager, including nm-applet for
system trays, nm-plasma for KDE Plasma, and a built-in network configuration tool
in GNOME.

38.3 Eduroam with NetworkManager

Eduroam is a roaming service providing international, secure Internet access at uni-
versities and other academic institutions. More information can be found fherel

38.3.1 Dependencies
Install the python3-dbus package.

38.3.2 Installation

Download the correct eduroam cat installer for your institution from fhere and exe-
cute it. It will provide a user interface guiding you through the process.

83

https://man.voidlinux.org/NetworkManager.8
https://man.voidlinux.org/nmcli.1
https://man.voidlinux.org/nmtui.1
https://eduroam.org/
https://cat.eduroam.org/

39 ConnMan

ConnMan(8)| is a daemon that manages network connections, is designed to be slim
and to use as few resources as possible. The connman package contains the basic
utilities to run ConnMan.

39.1 Starting ConnMan

To enable the ConnMan daemon, first any other network managing services
like |[dheped] [wpa supplicant] or wicd. These services all control network interface
configuration, and interfere with each other.

Finally, enable the connmand service.

39.2 Configuring ConnMan
39.2.1 ConnMan CLI

The connman package includes a command line tool, connmanctl(1)|to control network
settings. If you do not provide any commands, connmanctl starts as an interactive
shell.

Establishing a connection to an access point using the connmanctl interactive
shell might look as follows:

connmanctl

enable wifi

agent on

scan wifi

services

connect wifi_<uniqueid>
exit

V V V V V V H#

39.2.2 ConnMan Front-End Tools

There are many other front-ends to ConnMan, including connman-ui for system trays,
connman-gtk for GTK, cmst for QT and connman-ncurses for ncurses based Ul

39.3 Preventing DNS overrides by ConnMan

Create /etc/sv/connmand/conf with the following content:

OPTS="--nodnsproxy"

84

https://man.voidlinux.org/connman.8
https://man.voidlinux.org/connmanctl.1

40 Network Filesystems

40.1 NFS
40.1.1 Mounting an NFS Share

To mount an NFS share, start by installing the nfs-utils and sv-netmount packages.
Before mounting an NFS share, [enable|the statd, rpcbind, and netmount services.
If the server supports nfs4, the statd service isn’t necessary.
To mount an NFS share:

mount -t <mount_type> <host>:/path/to/sourcedir /path/to
/destdir

<mount_type> should be nfs4 if the server supports it, or nfs otherwise. <host>
can be either the hostname or IP address of the server.

Mounting options can be found in mount.nfs(8), while unmounting options can be
found in umount.nfs(8).

For example, to connect /volume on a server at 192.168.1.99 to an existing
/mnt/volume directory on your local system:

mount -t nfs 192.168.1.99:/volume /mnt/volume
To have the directory mounted when the system boots, add an entry to fstab(5):
192.168.1.99:/volume /mnt/volume nfs rw,hard 0 O

Refer to [nfs(5)| for information about the available mounting options.

40.1.2 Setting up a server (NFSv4, Kerberos disabled)

To run an NFS server, start by installing the nfs-utils package.
Edit /etc/exports to add a shared volume:

/storage/foo *.local (rw,no_subtree_check ,no_root_squash

)

This line exports the /storage/foo directory to any host in the local do-
main, with read/write access. For information about the no_subtree_check and
no_root_squash options, and available options more generally, refer to lexports(5).

Finally, the rpcbind, statd, and nfs-server services.

This will start your NFS server. To check if the shares are working, use the
showmount(8) utility to check the NF'S server status:

showmount -e localhost

You can use [nfs.conf(5)| to configure your server.

85

https://man.voidlinux.org/mount.nfs.8
https://man.voidlinux.org/umount.nfs.8
https://man.voidlinux.org/fstab.5
https://man.voidlinux.org/nfs.5
https://man.voidlinux.org/exports.5
https://man.voidlinux.org/showmount.8
https://man.voidlinux.org/nfs.conf.5

41 Session and Seat Management

Session and seat management is not necessary for every setup, but it can be used to
safely create temporary runtime directories, provide access to hardware devices and
multi-seat capabilities, and control system shutdown.

41.1 D-Bus

D-Bus is an IPC (inter-process communication) mechanism used by userspace software
in Linux. D-Bus can provide a system bus and/or a session bus, the latter being
specific to a user session.

e To provide a system bus, you should [enable] the dbus service. This might require
a system reboot to work properly.

e To provide a session bus, you can start a given program (usually a window man-
ager or interactive shell) with dbus-run-session(1). Most desktop environments,
if launched through an adequate display manager, will launch a D-Bus session
themselves. If a D-Bus session is active for the current session, the environment
variable DBUS_SESSION_BUS_ADDRESS should be defined.

Note that some software assumes the presence of a system bus, while other software
assumes the presence of a session bus.

41.2 elogind

elogind(8)| manages user logins and system power, as a standalone version of
systemd-logind. elogind provides necessary features for most desktop environments
and Wayland compositors. It can also be one of the mechanisms for rootless

Please read the "[Power Management|' section for things to consider before in-
stalling elogind.

To make use of its features, install the elogind package and make sure the
is enabled. You might need to log out and in again.

If you’re having any issues with elogind, its service, as waiting for a D-Bus
activation can lead to issues.

41.3 seatd

seatd(1)/is a minimal seat management daemon and an alternative to elogind primarily
for [wlroots compositors]

To use it, install the seatd package and enable its service. If you want non-root
users to be able to access the seatd session, add them to the _seatd group.

Note that, unlike elogind, seatd doesn’t do anything besides managing seats.

41.4 XDG _ RUNTIME DIR

XDG_RUNTIME_DIR is an environment variable defined by the XDG Base Directory
Specification. Its value sets the path to the base directory where programs should
store user-specific runtime files.
Install as your session manager to automatically set up XDG_RUNTIME_DIR.
Alternatively, manually set the environment variable through the shell. Make sure
to create a dedicated user directory and set its permissions to 700. A good default
location is /run/user/$(id -u).

86

https://man.voidlinux.org/dbus-run-session.1
https://man.voidlinux.org/elogind.8
https://man.voidlinux.org/seatd.1
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

42 Graphical Session

In order to configure a graphical session, you need:

e (Graphics drivers|

e A basis for your graphical session: [Xorg| or [Wayland]

You may also need:

e |Session management tools|

87

43 Graphics Drivers

This section covers basic graphics setup depending on the hardware configuration of
your system.

43.1 Section Contents

e (NVIDIA Optimus|

88

44 AMD or ATI

AMD GPU support requires the linux-firmware-amd package. If you have installed
the linux or linux-1ts packages, it will be installed as a dependency. If you installed
a version-specific kernel package (e.g., 1inux5.4), it may be necessary to manually
install linux-firmware-amd.

44.1 OpenGL

Install the Mesa DRI package, mesa-dri. This is already included in the xorg meta-
package, but it is needed when installing Xorg via xorg-minimal or for running a
Wayland compositor.

44.2 Vulkan

Install vulkan-loader, the Khronos Vulkan Loader. Then install one or both of
the Mesa AMD Vulkan driver, mesa-vulkan-radeon; or the GPUOpen AMD Vulkan
driver, amdvlk.

44.3 Xorg

Installing the xorg meta-package will pull in both xf86-video-amdgpu and, for older
hardware, xf86-video-ati. If you install xorg-minimal, choose one of these Xorg
driver packages to match your hardware. The amdgpu driver should support cards
built on AMD’s "Graphics Core Next 1.2" architecture, introduced circa 2012.

44.4 Video acceleration

Install the mesa-vaapi and mesa-vdpau packages.

89

45 Intel

Intel GPU support requires the linux-firmware-intel package. If you have installed
the linux or linux-1ts packages, it will be installed as a dependency. If you installed
a version-specific kernel package (e.g., 1inux5.4), it may be necessary to manually
install 1inux-firmware-intel.

45.1 OpenGL

OpenGL requires the Mesa DRI package, mesa-dri. This is provided by the xorg
meta-package, but will need to be installed manually when using the xorg-minimal
package or running a Wayland compositor.

45.2 Vulkan

Install the Khronos Vulkan Loader and the Mesa Intel Vulkan driver packages, re-
spectively vulkan-loader and mesa-vulkan-intel.

45.3 Video acceleration

Install the intel-video-accel meta-package:

This will install all the Intel VA-API drivers. intel-media-driver will be used
by default, but this choice can be overridden at runtime via the environment variable
LIBVA_DRIVER_NAME:

’ Driver Package \ Supported GPU Gen \ Explicit selection ‘
libva-intel-driver | up to Coffee Lake LIBVA_DRIVER_NAME=i965
intel-media-driver | from Broadwell LIBVA_DRIVER_NAME=iHD

45.4 Troubleshooting

The kernels packaged by Void are configured with
CONFIG_INTEL_IOMMU_DEFAULT_ON=y, which can lead to issues with their graphics
drivers, as reported by the kernel documentation. To fix this, it is necessary to disable
IOMMU for the integrated GPU. This can be done by adding intel_iommu=igfx_off
to your This problem is expected to happen on the Broadwell gen-
eration of internal GPUs. If you have another internal GPU and your issues are
fixed by this kernel option, you should file a bug reporting the problem to kernel
developers.

For newer Intel chipsets, the drivers may interfere with correct operation.
This is characterized by graphical acceleration not working and general graphical
instability. If this is the case, try removing all xf86-video-* packages.

90

https://www.kernel.org/doc/html/latest/arch/x86/iommu.html#graphics-problems

46 NVIDIA

46.1 nouveau (Open Source Driver)

This is a reverse engineered driver largely developed by the community, with some
documentation provided by Nvidia. It tends to perform well on older hardware, and
is required to use a large portion of the available Wayland compositors.

At the time of writing, graphics cards starting with second generation Maxwell
(GTX 9xx) are unable to perform at their full potential with nouveau. This is because
the linux-firmware collection is missing signed firmware blobs needed to reclock
these cards past their boot frequencies.

To use nouveau with Wayland, you only need the mesa-dri package, which pro-
vides the accelerated OpenGL driver. On X11, you also need an appropriate Xorg
driver. You can either install xf86-video-nouveau or use the universal modesetting
driver bundled with Xorg (this is the only option on Tegra based ARM boards). The
former can make use of GPU-specific 2D acceleration paths, which is primarily useful
on older cards with specialized fixed function hardware (the modesetting driver will
accelerate 2D using OpenGL via GLAMOR). When in doubt, it’s a good idea to try
xf86-video-nouveau first.

Note: xf86-video-nouveau is usually installed by default if you use the xorg
metapackage. If you use xorg-minimal, you will need to install it manually, either
directly or through xorg-video-drivers.

46.2 nvidia (Proprietary Driver)

The proprietary drivers are available in the [nonfree repository}

Check if your graphics card belongs to the [legacy branch. If it does not, install
the nvidia package. Otherwise you should install the appropriate legacy driver,
nvidiad70 or nvidia390. The older legacy driver, nvidia340, is no longer available,
and users are encouraged to [switch to nouveaul

’ Brand \ Type \ Model \ Driver Package ‘
NVIDIA | Proprietary | 800+ nvidia
NVIDIA | Proprietary | 600/700 nvidiad70
NVIDIA | Proprietary | 400/500 Series | nvidia390

The proprietary driver integrates in the kernel through [DKMS|
This driver offers better performance and power handling, and is recommended
where performance is needed.

46.3 32-bit program support (glibc only)

In order to run 32-bit programs with driver support, you need to install additional
packages.

If using the nouveau driver, install the mesa-dri-32bit package.

If using the nvidia driver, install the nvidia<x>-1ibs-32bit package. <x> rep-
resents the legacy driver version (‘470‘ or 390) or can be left empty for the main
driver.

91

https://www.nvidia.com/en-us/drivers/unix/legacy-gpu/

46.4 Reverting from nvidia to nouveau

46.4.1 Uninstalling nvidia

In order to revert to the nouveau driver, install the [nouveau® driver] (if it was not
installed already), then remove the nvidia, nvidiad70, or nvidia390 package, as
appropriate.

If you were using the obsolete nvidia340 driver, you might need to install the
libglvnd package after removing the nvidia340 package.

46.4.2 Keeping both drivers

It is possible to use the nouveau driver while still having
the nvidia driver installed. To do so, remove the blacklist-
ing of nouveau in /etc/modprobe.d/nouveau_blacklist.conf,
/usr/lib/modprobe.d/nvidia.conf, or /usr/lib/modprobe.d/nvidia-dkms.conf
by commenting it out:

#blacklist nouveau
For Xorg, specify that it should load the nouveau driver rather than the nvidia
driver by creating the file /etc/X11/xorg.conf .d/20-nouveau.conf with the follow-
ing content:
Section "Device"
Identifier "Nvidia card"
Driver "mouveau"

EndSection

You may need to reboot your system for these changes to take effect.

92

47 NVIDIA Optimus

NVIDIA Optimus refers to a dual graphics configuration found on laptops consisting
of an Intel integrated GPU and a discrete NVIDIA GPU.

There are different methods to take advantage of the NVIDIA GPU, which depend
on the driver version supported by your hardware.

In order to determine the correct driver to install, it is not enough to look at the
"Supported Products" list on NVIDIA’s website, because they are not guaranteed
to work in an Optimus configuration. So the only way is to try installing the latest
nvidia, rebooting, and looking at the kernel log. If your device is not supported, you
will see a message like this:

NVRM: The NVIDIA GPU xxxx:xx:xx.x (PCI ID: XXXX:XXXX)

NVRM: installed in this system is not supported by the xxx
. XX

NVRM: NVIDIA Linux driver release. Please see ’Appendix

NVRM: A - Supported NVIDIA GPU Products’ in this release’s

NVRM: README, available on the Linux driver download page

NVRM: at www.nvidia.com.

which means you have to uninstall nvidia and install the legacy nvidia390.
A summary of the methods supported by Void, which are mutually exclusive:

(PRIME Render Offload)

e available on nvidia and nvidia470

e allows to switch to the NVIDIA GPU on a per-application basis

e more flexible but power saving capabilities depend on the hardware (pre-Turing
devices are not shut down completely)

Offloading Graphics Display with RandR 1.4
e available on nvidia, nvidia470, and nvidia390
e allows to choose which GPU to use at the start of the X session

e less flexible, but allows the user to completely shut down the NVIDIA GPU
when not in use, thus saving power

[Bumblebeel
e available on nvidia, nvidia470, and nvidia390
e allows to switch to the NVIDIA GPU on a per-application basis
e unofficial method, offers poor performance

Nouveau PRIME]

e uses the open source driver nouveau

e allows to switch to the NVIDIA GPU on a per-application basis

e nouveau is a reverse-engineered driver and offers poor performance

You can check the currently used GPU by searching for renderer string in the
output of the glxinfo command. It is necessary to install the glxinfo package for
this. For the first two alternatives below, it is also possible to verify that a process is
using the NVIDIA GPU by checking the output of nvidia-smi.

93

47.1 PRIME Render Offload

In this method, GPU switching is done by setting environment variables when ex-
ecuting the application to be rendered on the NVIDIA GPU. The wrapper script
prime-run is available from the nvidia package, and can be used as shown below:

$ prime-run <application>

For more information, see NVIDIA’s README

47.2 Bumblebee

Enable the bumblebeed service and add the user to the bumblebee group. This
requires a re-login to take effect.
Run the application to be rendered on the NVIDIA GPU with optirun:

$ optirun <application>

47.3 Nouveau PRIME

This method uses the open source nouveau driver. If the NVIDIA drivers are installed,
it is necessary to |configure the system to use nouveaul
Set DRI_PRIME=1 to run an application on the NVIDIA GPU:

$ DRI_PRIME=1 <application>

94

https://download.nvidia.com/XFree86/Linux-x86_64/440.44/README/primerenderoffload.html

48 Xorg

This section details the manual installation and configuration of the Xorg display
server and common related services and utilities. If you would just like to install a
full desktop environment, it is recommended to try the

48.1 Installation

Void provides a comprehensive xorg package which installs the server and all of the
free video drivers, input drivers, fonts, and base applications. This package is a safe
option, and should be adequate for most systems which don’t require proprietary
video drivers.

If you would like to select only the packages you need, the xorg-minimal package
contains the base xorg server *only*. If you install only xorg-minimal, you will likely
need to install a font package (like xorg-fonts), a terminal emulator (like xterm),
and a window manager to have a usable graphics system.

48.2 Video Drivers

Void provides both open-source and proprietary (non-free) video drivers.

48.2.1 Open Source Drivers

Xorg can use two categories of open source drivers: DDX or modesetting.

DDX The DDX drivers are installed with the xorg package by default, or may be
installed individually if the xorg-minimal package was installed. They are provided
by the xf86-video-* packages.

For advanced configuration, see the man page corresponding to the vendor name,
like intel(4).

Modesetting Modesetting requires the mesa-dri package, and no additional
vendor-specific driver package.

Xorg defaults to DDX drivers if they are present, so in this case modesetting must
be explicitly selected: see [Forcing the modesetting driver|

For advanced configuration, see modesetting(4).

48.2.2 Proprietary Drivers

Void also provides [proprietary NVIDIA drivers, which are available in the

48.3 Input Drivers

A number of input drivers are available for Xorg. If xorg-minimal was installed and a
device is not responding, or behaving unexpectedly, a different driver may correct the
issue. These drivers can grab everything from power buttons to mice and keyboards.
They are provided by the xf86-input-* packages.

95

https://man.voidlinux.org/intel.4
https://man.voidlinux.org/modesetting.4

48.4 Xorg Configuration

Although Xorg normally auto-detects drivers and configuration is not needed,
a config for a specific keyboard driver may look something like a file
/etc/X11/xorg. conf .d/30-keyboard.conf with the contents:

Section "InputClass"
Identifier "keyboard-all"
Driver "evdev"
MatchIsKeyboard "on"

EndSection

48.4.1 Forcing the modesetting driver

Create the file /etc/X11/xorg.conf.d/10-modesetting. conf:

Section "Device"
Identifier "GPUO"
Driver "modesetting"

EndSection

and restart Xorg. Verify that the configuration has been picked up with:

$ grep -E -ml ’\(II\) modeset\([0-9]1+\):’ /var/log/Xorg.O.
log

If there is a match, modesetting is being used.

48.5 Starting X Sessions
48.5.1 startx

The xinit package provides the startx(1) script as a frontend to xinit(1), which can be
used to start X sessions from the console. For example, to start i3(1), edit /.xinitrc
to contain exec /bin/i3 on the last line.

To start arbitrary programs together with an X session, add them in /.xinitrc
before the last line. For example, to start xscreensaver(l) before starting i3, add
xscreensaver & before the last line.

A 7 .xinitrc file which starts xscreensaver and i3 is shown below:

Xscreensaver &
exec /bin/i3

Then call startx to start a session.
If a D-Bus session bus is required, you can jmanually start one|

48.5.2 Display Managers

Display managers (DMs) provide a graphical login UI. A number of DMs are available
in the Void repositories, including gdm (the GNOME DM), sddm (the KDE DM) and

lightdm. When setting up a display manager, be sure to before

enabling it.

96

https://man.voidlinux.org/startx.1
https://man.voidlinux.org/xinit.1
https://man.voidlinux.org/i3.1
https://man.voidlinux.org/xscreensaver.1

49 Wayland

This section details the manual installation and configuration of Wayland compositors
and related services and utilities.

49.1 Installation

Unlike Wayland implementations combine the display server, the window man-
ager and the compositor in a single application.

49.1.1 Desktop Environments

GNOME, KDE Plasma and Enlightenment have Wayland sessions. GNOME uses its
Wayland session by default. When using these desktop environments, applications
built with GTK+ will automatically choose the Wayland backend, while Qt5 and
EFL applications might require [setting some environment variableg| if used outside
KDE or Enlightenment, respectively.

49.1.2 Standalone compositors

Void Linux currently packages the following Wayland compositors:
e Weston: reference compositor for Wayland

e Sway: an i3-compatible Wayland compositor

Wayfire: 3D Wayland compositor

Hikari: a stacking compositor with some tiling features

Cage: a Wayland kiosk

River: a dynamic tiling Wayland compositor

labwe: a window-stacking compositor, inspired by Openbox

Qtile: a dynamic tiling Wayland compositor (via gtile-wayland)

49.1.3 Video drivers

Both GNOME and KDE Plasma have EGLStreams backends for Wayland, which
means they can use the proprietary NVIDIA drivers. Most other Wayland compositors
require drivers that implement the GBM interface. The main driver for this purpose is
provided by the mesa-dri package. The "|Graphics Drivers|' section has more details
regarding setting up graphics in different systems.

49.1.4 Seat management

Wayland compositors require some way of controlling the video display and accessing
input devices. In Void systems, this requires a seat manager service, which can
be either elogind or seatd. Enabling them is explained in the ["Session and Seat|

Management"| session.

97

49.1.5 Native applications

Qt5-based applications require installing the qt5-wayland package and setting the en-
vironment variable QT_QPA_PLATFORM=wayland-egl to enable their Wayland backend.
Some KDE specific applications also require installing the kwayland package. [EFL-
based applications require setting the environment variable ELM_DISPLAY=wl, and can
have issues without it, due to not supporting XWayland properly. SDL-based appli-
cations require setting the environment variable SDL_VIDEODRIVER=wayland. GTK-+-
based applications should use the Wayland backend automatically. Information about
other toolkits can be found in the Wayland documentation.
Media applications, such as mpv(1), vlc(1) and imv work natively on Wayland.

Web browsers Morzilla Firefox ships with a Wayland backend which is dis-
abled by default. To enable the Wayland backend, either set the environ-
ment variable MOZ_ENABLE_WAYLAND=1 before running firefox or use the provided
firefox-wayland script.

Browsers based on GTK+ or Qt5, such as Midori and .qutebrowser(1), should work
on Wayland natively.

Running X applications inside Wayland If an application doesn’t support Way-
land, it can still be used in a Wayland context. XWayland is an X server that bridges
this gap for most Wayland compositors, and is installed as a dependency for most
of them. Its package is xorg-server-xwayland. For Weston, the correct package is
weston-xwayland.

49.2 Configuration
The Wayland library requires the [XDG RUNTIME DIRY environment variable to

determine the directory for the Wayland socket.
It is also possible that some applications use the XDG_SESSION_TYPE environment
variable in some way, which requires that you set it to wayland.

98

https://wayland.freedesktop.org/qt5.html
https://wayland.freedesktop.org/efl.html
https://libsdl.org
https://wiki.gnome.org/Initiatives/Wayland/GTK%2B
https://wayland.freedesktop.org/toolkits.html
https://man.voidlinux.org/mpv.1
https://man.voidlinux.org/vlc.1
https://man.voidlinux.org/qutebrowser.1

50 Fonts

To customize font display in your graphical session, you can use configurations pro-
vided in /usr/share/fontconfig/conf.avail/. To do so, create a symlink to the
relevant .conf file in /etc/fonts/conf.d/, then use xbps-reconfigure(1) to reconfig-
ure the fontconfig package.

For example, to disable use of bitmap fonts:

1ln -s /usr/share/fontconfig/conf.avail/70-no-bitmaps.
conf /etc/fonts/conf.d/

xbps-reconfigure -f fontconfig

Use [fc-conflist(1)| to list which configurations are in effect.

99

https://man.voidlinux.org/xbps-reconfigure.1
https://man.voidlinux.org/fc-conflist.1

51 Icons

51.1 GTK

By default, GTK-based applications try to use the Adwaita icon theme for ap-
plication icons. Consequently, installation of the gtk+3 package will also install
the adwaita-icon-theme package. If you wish to use a different theme, install
the relevant package, then specify the theme in /etc/gtk-3.0/settings.ini or
/.config/gtk-3.0/settings.ini. adwaita-icon-theme can be removed after
the package.

For information about how to specify a different GTK icon theme in
settings.ini, refer to the GtkSettings documentation, in particular the "gtk-icon-
theme-name" property.

100

https://developer.gnome.org/gtk3/stable/GtkSettings.html#GtkSettings.properties
https://developer.gnome.org/gtk3/stable/GtkSettings.html#GtkSettings--gtk-icon-theme-name
https://developer.gnome.org/gtk3/stable/GtkSettings.html#GtkSettings--gtk-icon-theme-name

52 XDG Desktop Portals

Some applications, including use XDG Desktop Portals to provide access to
various system interfaces, including file open and save dialogs, the clipboard, screen-
casting, opening URLs, and more.

52.1 Installation

XDG Desktop Portals require auser D-Bus session bus| Install xdg-desktop-portal
and one or more backends:

Backend \ Notes

xdg-desktop-portal-gnome | Provides most common and GNOME-specific interfaces (GTK+ UI)

xdg-desktop-portal-gtk Provides most common interfaces (GTK+ UI)

xdg-desktop-portal-kde Provides most common and KDE-specific interfaces (Qt/KF5 UI)

xdg-desktop-portal-1xqt | Only provides a file chooser (based on libfm-qt)

io.elementary.files Only provides a file chooser

xdg-desktop-portal-wlr Only provides a screenshot and screencasting interface for wlroots compos

If unsure what to choose, xdg-desktop-portal-gtk is a good default choice.

52.2 Configuration

In most cases, the default configuration, located at
/usr/share/xdg-desktop-portal/portals.conf, should suffice. If necessary,
this configuration can be overridden for specific desktop environments and portal
interfaces by creating $XDG_CURRENT_DESKTOP-portals.conf or portals.conf at
the system or user level as described in |portals.conf(5).

101

https://github.com/flatpak/xdg-desktop-portal
https://man.voidlinux.org/portals.conf.5

53 GNOME

53.1 Pre-installation

GNOME supports both X and Wayland sessions. Follow the '"Wayland]" or "[Xorg]"
sections to setup your preferred environment.

Install the dbus package, ensure the dbus service is enabled, and reboot for the
changes to take effect.

53.2 Installation

Install the gnome package for a GNOME environment which includes the base
GNOME desktop and a subset of GNOME applications. Additional applications
are available via the gnome-apps package.
A minimal GNOME environment can be created by installing the gnome-core
package. Note, however, that not all GNOME features may be present or functional.
If you require ZeroConf support, install the avahi package and enable the
avahi-daemon service.

53.3 Starting GNOME

The gdm package provides the gdm service for the GNOME Display Manager;
before enabling it. GDM defaults to providing a Wayland session via the
mutter window manager, but an X session can be chosen instead.

102

http://www.zeroconf.org/

54 KDE

54.1 Installation

Install the kde5 package, and optionally, the kde5-baseapps package.

To use the "Networks" widget, enable the dbus and NetworkManager services.

Installing the kdeb package also installs the sddm package, which provides the sddm
service for the Simple Desktop Display Manager. This service depends on the dbus
service being enabled; before enabling it. If you are not intending to
run SDDM via a remote X server, you will need to install either the xorg-minimal
package or the xorg package. By default, SDDM will start an X-based Plasma session,
but you can request a Wayland-based Plasma session instead.

If you wish to start an X-based session from the console, use to run
startplasma-x11. For a Wayland-based session, run startplasma-wayland directly.

54.2 Dolphin

Dolphin is the default file manager of the KDE desktop environment. It can be
installed on its own by installing the dolphin package, or it can be installed as part
of the kde5-baseapps meta-package.

54.2.1 Thumbnail Previews

To enable thumbnail file previews, install the kdegraphics-thumbnailers package.
If you want video thumbnails, the ffmpegthumbs package is also necessary. Enable
previews in "Control" -> "Configure Dolphin" -> "General" -> "Previews" by check-
ing the corresponding boxes. File previews will be shown for the selected file types
after clicking "Preview" in Dolphin’s toolbar.

103

55 Multimedia

55.1 Audio setup

To setup audio on your Void Linux system you have to decide if you want to use
[PulseAudio] [PipeWire| or just [ALSA] Sndio is also available, but is neither supported

nor recommended.
Some applications require PulseAudio, especially closed source programs, but

provides a drop-in replacement for PulseAudio.
If is not enabled, it is necessary to be in the audio group in order to have

access to audio devices.

104

56 ALSA

To use ALSA, install the alsa-utils package and make sure your user is a member
of the audio group.

The alsa-utils package provides the alsa service. When enabled, this service
saves and restores the state of ALSA (e.g. volume) at shutdown and boot, respectively.

To allow use of software requiring PulseAudio, install the apulse package. apulse
provides part of the PulseAudio interface expected by applications, translating calls
to that interface into calls to ALSA. For details about using apulse, consult [the
project README,

56.1 Configuration

The default sound card can be specified via ALSA configuration files or via kernel
module options.
To obtain information about the order of loaded sound card modules:

$ cat /proc/asound/modules
0O snd_hda_intel
1 snd_hda_intel
2 snd_usb_audio

To set a different card as the default, edit /etc/asound.conf or the per-user
configuration file /.asoundrc:

defaults.ctl.card 2;
defaults.pcm.card 2;

or specify sound card module order in /etc/modprobe.d/alsa.conf:

options snd_usb_audio index=0

56.2 Dmix

The dmix ALSA plugin allows playing sound from multiple sources. dmix is enabled
by default for soundcards which do not support hardware mixing. To enable it for
digital output, edit /etc/asound.conf:

pcm.dsp {

type plug
slave.pcm "dmix"

105

https://github.com/i-rinat/apulse/blob/master/README.md
https://github.com/i-rinat/apulse/blob/master/README.md

57 PipeWire

PipeWire is a modern server for handling audio (and video) streams. It is highly flex-
ible and can interface with applications designed for ALSA, PulseAudio, and JACK
audio systems. It is also designed to work well with Flatpak applications and provides
a method for screenshotting and screensharing on Wayland via [xdg-desktop-portall

57.1 Prerequisites

PipeWire requires an active [D-Bus user session busl If your desktop environment,
window manager, or Wayland compositor is configured to provide this, no further
configuration should be required. If not, the desktop environment, window manager,
or Wayland compositor may need to be launched with ‘dbus-run-session(1)‘

PipeWire also requires the [XDG _RUNTIME DIR| environment variable to be
defined in your environment to work properly.

If not usinglelogind], it is necessary to be in the audio group to access audio devices
and the video group to access video devices.

57.2 Basic Setup

To use PipeWire, install the pipewire package. This will also install a PipeWire
session manager, wireplumber.

57.2.1 Session Management

In PipeWire, a session manager assumes responsibility for interconnecting media
sources and sinks as well as enforcing routing policy. Without a session manager,
PipeWire will not function.

If you have installed an earlier version of the Void pipewire package, make

sure to update your system to eliminate any stale system configuration
that

may attempt to launch pipewire-media-session, the original PipeWire
session

manager. Users who previously overrode the system configuration to use
wireplumber, *e.g.* by placing a custom pipewire.conf file in

/etc/pipewire or $XDG_CONFIG_HOME/pipewire, may wish to reconcile
these

overrides with /usr/share/pipewire/pipewire.conf installed by the
most

recent pipewire package. If the sole purpose of a prior override was to

disable pipewire-media-session, deleting the custom configuration may
be

sufficient.

106

https://man.voidlinux.org/dbus-run-session.1

Currently, there is only one session manager available: WirePlumber. To configure
PipeWire to use this session manager and ensure proper startup ordering, PipeWire
should be configured to launch the session manager directly. This can be accomplished
by running

mkdir -p /etc/pipewire/pipewire.conf.d
1n -s /usr/share/examples/wireplumber/10-wireplumber.
conf /etc/pipewire/pipewire.conf.d/

for system-wide configuration, or

$: "${XDG_CONFIG_HOME:=${HOME}/.config}"

mkdir -p "${XDG_CONFIG_HOME}/pipewire/pipewire.conf.d"

ln -s /usr/share/examples/wireplumber/10-wireplumber.
conf "${XDG_CONFIG_HOME}/pipewire/pipewire.conf.d/"

©“ P

for per-user configuration.

57.2.2 PulseAudio interface

The PulseAudio interface is optional but highly recommended. Most applications
cannot speak directly to PipeWire, but instead speak to PipeWire’s PulseAudio in-
terface.
If pulseaudio is installed, uninstall it and ensure pulseaudio is not running.
Modify the PipeWire configuration to launch pipewire-pulse:

*

mkdir -p /etc/pipewire/pipewire.conf.d
1n -s /usr/share/examples/pipewire/20-pipewire-pulse.
conf /etc/pipewire/pipewire.conf.d/

for system configurations, or

"${XDG_CONFIG_HOME:=${HOME}/.config}"
mkdir -p "${XDG_CONFIG_HOME}/pipewire/pipewire.conf.d"
1In -s /usr/share/examples/pipewire/20-pipewire-pulse.
conf "${XDG_CONFIG_HOME}/pipewire/pipewire.conf.d/"

©» H &hH

for per-user configurations.

57.2.3 Testing
pipewire(1)| should be started as your user. To test that PipeWire works, run the
pipewire command in a terminal emulator in your session:

$ pipewire

Launching pipewire should be sufficient to establish a working PipeWire session
that uses wireplumber for session management.
The status of WirePlumber can be checked with:

$ wpctl status

PipeWire ’pipewire-0’ [0.3.82, ...]
[...]

107

https://man.voidlinux.org/pipewire.1

If the [PulseAudio interface| was configured, use pactl(l) (provided by the
pulseaudio-utils package) to ensure it is working properly:

$ pactl info

[...]
Server Name: PulseAudio (on PipeWire 0.3.82)
[...]

57.2.4 Launching Automatically

Once pipewire works as expected, it can be configured to launch when starting a
graphical session. There are several ways this can be achieved:

e Use the autostarting mechanism of your desktop environment: many
desktop environments have a way to configure applications and programs to
start automatically.

e Use XDG Desktop Application Autostart: many desktop environments
also support the Desktop Application Autostart Specification. The pipewire
package ships a Desktop Entry file for pipewire in /usr/share/applications.
If your environment supports the Desktop Application Autostart, you can start
pipewire by symlinking the desktop file to the system (‘/etc/xdg/autostart’) or
user (‘6XDG_CONFIG HOME /autostart‘ or /.config/autostart) autostart
directory. If you are using a desktop environment, window manager, or Wayland
compositor that does not support this, a tool like ‘dex(1)‘| can be used to add
support for Desktop Application Autostart, for example: dex -environment
<window manager> -autostart -search-paths 7.config/autostart.

e Use your window manager’s startup scripts: pipewire can be launched
directly from your window manager or Wayland compositor’s startup script.

57.3 Optional Setup
57.3.1 Command-line and Terminal interfaces

A variety of tools for interacting with PipeWire are included in the pipewire package,
including pw-cli(1), pw-top(1l), and pw-cat(1). wpctl can be used to control the
WirePlumber [gession manager}

If using the [PulseAudio interface] PulseAudio configuration tools like pactl (from
pulseaudio-utils) and ncpamixer can also be used.

57.3.2 Graphical interfaces

gpwgraph and helvum provide a node-and-graph-style interface for connecting appli-
cations and devices.

If using the [PulseAudio interface] PulseAudio configuration tools like
pavucontrol, pavucontrol-qt, and the widgets and applets integrated into many
desktop environments can also be used to configure PipeWire.

57.3.3 Bluetooth audio
Install the libspa-bluetooth package.

108

https://man.voidlinux.org/pactl.1
https://specifications.freedesktop.org/autostart-spec/autostart-spec-latest.html
https://man.voidlinux.org/dex.1
https://man.voidlinux.org/pw-cli.1
https://man.voidlinux.org/pw-top.1
https://man.voidlinux.org/pw-cat.1

57.3.4 ALSA integration

Install alsa-pipewire, then enable the PipeWire ALSA device and make it the de-
fault:

mkdir -p /etc/alsa/conf.d

1ln -s /usr/share/alsa/alsa.conf.d/50-pipewire.conf /etc/
alsa/conf.d

1n -s /usr/share/alsa/alsa.conf.d/99-pipewire-default.
conf /etc/alsa/conf.d

57.3.5 JACK interface

Install 1ibjack-pipewire.
Use pw-jack(1)| to launch JACK clients manually:

$ pw-jack <application>

Alternatively, override the library provided by libjack (see ld.so(8)). The follow-
ing approach will work on glibc-based systems:

echo "/usr/lib/pipewire-0.3/jack" > /etc/ld.so.conf.d/
pipewire-jack.conf
ldconfig

then reboot.

57.4 Troubleshooting

57.4.1 Common errors

[E]J[...] mod.rt [[module-rt.c: 262
pw_rtkit_bus_get ()] Failed to connect to system bus:
Failed to connect to socket /run/dbus/system_bus_socket

No such file or directory

This indicates the system D-Bus is not running. the dbus service.

[E]I[...] mod.rt [[module-rt.c: 262
pw_rtkit_bus_get ()] Failed to connect to session bus: D
-Bus library appears to be incorrectly set up: see the
manual page for dbus-uuidgen to correct this issue. (
Failed to open "/var/lib/dbus/machine-id": No such file

or directory; Failed to open "/etc/machine-id": No
such file or directory)

This indicates the fuser session D-Bus|is not running.

[E]J[...] mod.protocol-native | [module-protocol-: 710
init_socket_name ()] server 0x55e09658e9d0: name
pipewire-0 is not an absolute path and no runtime dir
found. Set one of PIPEWIRE_RUNTIME_DIR, XDG_RUNTIME_DIR

or USERPROFILE in the environment

This indicates[XDG RUNTIME DIRis not set up properly.

109

https://man.voidlinux.org/pw-jack.1
https://man.voidlinux.org/ld.so.8

57.4.2 Only a "dummy" output is found

If a session manager (like wireplumber) is not running, and restart
PipeWire.

If a session manager is running, check if your user is in the audio and video
groups. If not using elogind, this is necessary for PipeWire to access devices.

110

58 PulseAudio

Depending on which applications you use, you might need to provide PulseAudio with
a D-BUS session bus (e.g. via dbus-run-session) or a D-BUS system bus (via the
dbus service).

For applications which use ALSA directly and don’t support PulseAudio, the
alsa-plugins-pulseaudio package can make them use PulseAudio through ALSA.

PulseAudio will automatically start when needed. If it is not starting automat-
ically, it can be started manually by invoking pulseaudio(1) from the terminal as
follows:

$ pulseaudio --daemonize=no --exit-idle-time=-1

On the other hand, PulseAudio can also end up being auto activated when it isn’t
desired. To inhibit this behavior, the autospawn directive from pulse-client.conf(5)
can be set to no.

There are several methods of allowing PulseAudio to access to audio devices. The
simplest one is to add your user to the audio group. Alternatively, you can use a
session manager, like elogind.

111

https://man.voidlinux.org/pulseaudio.1
https://man.voidlinux.org/pulse-client.conf.5

59 Bluetooth

Ensure the Bluetooth controller is not blocked. Use rfkill to check whether there
are any blocks and to remove soft blocks. If there is a hard block, there is likely
either a physical hardware switch or an option in the BIOS to enable the Bluetooth
controller.

$ rfkill

ID TYPE DEVICE SOFT HARD
0 wlan phyoO unblocked unblocked
1 bluetooth hciO blocked unblocked

rfkill unblock bluetooth

59.1 Installation

Install the bluez package and enable the bluetoothd and dbus services. Then, add
your user to the bluetooth group and restart the dbus service, or simply reboot the
system. Note that restarting the dbus service may kill processes making use of it.
To use an audio device such as a wireless speaker or headset, ALSA users need
to install the bluez-alsa package. users do not need any additional

software. users need libspa-bluetooth.

59.2 Usage

Manage Bluetooth connections and controllers using bluetoothctl, which provides
a command line interface and also accepts commands on standard input.
Consult the Arch Wiki| for an example of how to pair a device.

59.3 Configuration

The main configuration file is /etc/bluetooth/main. conf.

112

https://wiki.archlinux.org/index.php/Bluetooth#Pairing

60 TeX Live

In Void, the texlive-bin package provides a basic TeX installation, including the
tlmgr program. Use tlmgr to install TeX packages and package collections from
CTAN mirrors. Install the gnupg package to allow tlmgr to verify TeX packages.

The texlive-bin package contains the latest TeX Live version; however, earlier
versions, such as tex1ive2018-bin, are also available.

The texlive package and texlive-* packages are also available, and provide
TeX packages directly via xbps. TeX packages installed via those packages cannot
interact with TeX packages installed directly from CTAN (via tlmgr). For example:
pdflatex from texlive-pdflatex cannot be used to compile a TeX document that
uses a package installed via tlmgr; tlmgr install pdflatex would be required for
that.

60.1 Configuring TeX Live
After installing TeX Live, update the value of PATH:

$ source /etc/profile

Check that /opt/texlive/<year>/bin/x86_64-1linux (or
/opt/texlive/<year>/bin/i386-1linux) is in your PATH:

$ echo $PATH
If required, change the global default paper size:

tlmgr paper <letter|a4d>

60.2 Installing/Updating TeX packages

To install all available packages:
tlmgr install scheme-full

To install specific packages, you can install the collection(s) including them. To
list the available collections:

$ tlmgr info collections
To see the list of files owned by a collection:
$ tlmgr info --1list collection-<name>
To install the collection:
tlmgr install collection-<name>
To install a standalone package, first check if the package exists:

$ tlmgr search --global <package>

113

and then install it:

tlmgr install <package>

To find the package providing a particular file (for example, a font):
tlmgr search --file <filename> --global

To remove a package or a collection:

tlmgr remove <package>

To update installed packages:

tlmgr update --all

For a full description, check:
https://www.tug.org/texlive/doc/tlmgr.html

114

https://www.tug.org/texlive/doc/tlmgr.html

61 External Applications

61.1 Programming Languages

The Void repositories have a number of Python and Lua packages. If possible, install
packages from the Void repositories or consider packaging the library or application
you need. Packaging your application allows for easier system maintenance and can
benefit other Void Linux users, so consider making a pull request for it. The contri-
bution instructions can be found here.

To keep packages smaller, Void has separate devel packages for header files and
development tools. If you install a library or application via a language’s package
manager (e.g. pip, gem), or compile one from source, you may need to install the
programming language’s -devel package. This is specially relevant for musl libc
users, due to pre-built binaries usually targeting glibc instead.

’ Language \ Package Manager \ Void Package ‘

Python3 | pip, anaconda, virtualenv, etc | python3-devel
Python2 | pip, anaconda, virtualenv, etc | python2-devel
Ruby gem ruby-devel
lua luarocks lua-devel

61.2 Restricted Packages

Some packages have legal restrictions on their distribution (e.g. Discord), may be
too large, or have another condition that makes it difficult for Void to distribute.
These packages have build templates, but the packages themselves are not built or
distributed. As such, they must be built locally. For more information see the page
on [restricted packages|

61.3 Non-x86 64 Arch

The Void build system runs on x86 64 servers, both for compiling and cross com-
piling packages. However, some packages (e.g. libreoffice) do not support cross-
compilation. These packages have to be built locally on a computer running the same
architecture and libc as the system on which the package is to be used. To learn how
to build packages, refer to the README for the void-packages repository.

61.4 Flatpak

Flatpak is another method for installing external proprietary applications on Linux.
For information on using Flatpak with Void Linux, see the official Flatpak documen-
tation.

If sound is not working for programs installed using Flatpak, auto-
activation might not be working correctly. Make sure PulseAudio is running before
launching the program.

Note that Flatpak’s sandboxing will not necessarily protect you from any security
and/or privacy-violating features of proprietary software.

115

https://github.com/void-linux/void-packages/blob/master/CONTRIBUTING.md
https://github.com/void-linux/void-packages/blob/master/README.md
https://flatpak.org/setup/Void%20Linux/
https://flatpak.org/setup/Void%20Linux/

61.4.1 Troubleshooting

Some apps may not function properly (e.g. not being able to access the host sys-
tem’s files). Some of these issues can be fixed by installing one or more of the
xdg-user-dirs, xdg-user-dirs-gtk or xdg-utils packages, and setting up @
Desktop Portals

Some Flatpaks require and/or

61.5 Applmages

An Applmage is a file that bundles an application with everything needed to run it.
An Applmage can be used by making it executable and running it; installation is not
required. Applmages can be run in a sandbox, such as firejail.

Some of the applications for which an Applmage is available can be found on
ApplmageHubl

AppImages do not yet work on musl installations.

61.6 Octave Packages

Some Octave packages require external dependencies to compile and run. For example,
to build the control package, you must install the openblas-devel, libgomp-devel,
libgfortran-devel, gcc-fortran, and gcc packages.

61.7 MATLAB

To use MATLAB'’s help browser, live scripts, add-on installer, and simulink, install
the 1ibselinux package.

61.8 Steam

Steam can be installed either via a native package, which requires [enabling the "non-|
[free” repository] or via [Flatpakl The list of dependencies for different platforms and
troubleshooting information for the native package can be found in its
while this section deals with potential issues faced by Flatpak users.

If you are using a different drive to store your game library, the -filesystem
option from flatpak-override(1) can prove useful.

116

https://appimage.org/
https://firejail.wordpress.com/
https://appimage.github.io/
https://man.voidlinux.org/flatpak-override.1

62 Printing

CUPS (Common Unix Printing System) is the supported mechanism for connecting
to printers on Void Linux.

As prerequisites, install the cups package and enable the cupsd service. Wait until
the service is marked available.

62.1 Installing Printing Drivers

If the printer is being accessed over the network and supports PostScript or PCL,
CUPS alone should be sufficient. However, additional driver packages are necessary
for local printer support. The cups-filters package provides driver support for
CUPS.
Depending on the hardware in question, additional drivers may be necessary.
Some CUPS drivers contain proprietary or binary-only extensions. These are
available only in the nonfree repository, and sometimes only for specific architectures.

62.1.1 Driverless printing

Most modern network printers support printing driverlessly using the IPP Everywhere
standard. See https://www.pwg.org/printers/| for a list of self-certified printers sup-
porting this standard. Even if a printer is not on this list, there is still a high chance
it is supported.

Do note that cups-filters is still required for driverless printing.
62.1.2 Gutenprint drivers
Gutenprint provides support for many printers. These drivers are contained in the
gutenprint package.
62.1.3 HP drivers

Printers from Hewlett-Packard require the hplip package.
Running the following command will guide you through the driver installation
process. The default configuration selections it suggests are typically sufficient.

hp-setup -1

62.1.4 Brother drivers

For Brother printer support, install the foomatic drivers, which are contained in the
foomatic-db and foomatic-db-nonfree packages. Support for various laser models
is provided by the brother-brlaser package.

62.1.5 Drivers for Epson Inkjet printers

Install the epson-inkjet-printer-escpr package for Epson Inkjet printers.

62.1.6 Canon PIXMA /MAXIFY drivers

The cnijfilter2 package contains drivers for various Canon PIXMA and MAXIFY
models. Please note that installing the driver package requires|enabling the "nonfree"|

repositor

117

https://www.pwg.org/printers/

62.2 Configuring a New Printer

CUPS provides a web interface and command line tools that can be used to configure
printers. Additionally, various native GUI options are available and may be better
suited, depending on the use-case.

62.2.1 Automatically

Printers with support for IPP Everywhere can be discovered and configured automat-
ically using ZeroConf. To enable this, install the avahi and nss-mdns package and
enable the avahi-daemon service.

62.2.2 Web interface

To configure the printer using the CUPS web interface, navigate to
http://localhost:631] in a browser. Under the "Administration" tab, select "Printers
> Add Printer". When asked to log in, use an account that is in the 1lpadmin group.
62.2.3 Command line

The lpadmin(8) tool may be used to configure a printer using the command line.

62.2.4 Graphical interface

The system-config-printer package offers simple and robust configuration of new
printers. Install and invoke it:

system-config-printer

Normally this tool requires root privileges. However, if you are using Poli-
cyKit, you can install the cups-pk-helper package to allow unprivileged users to
use system-config-printer.

While system-config-printer is shown here, your desktop environment may
have a native printer dialog, which may be found by consulting the documentation
for your DE.

62.3 Troubleshooting
62.3.1 USB printer not shown

The device URI can be found manually by running:

/usr/lib/cups/backend/usb

118

http://www.zeroconf.org/
http://localhost:631
https://man.voidlinux.org/lpadmin.8

63 Containers and Virtual Machines
This section describes how to set up some of the container and virtual machine soft-
ware available on Void.
63.1 Section Contents
o [T T .
o [ibviril
o [XC

119

64 Creating and using chroots and containers

chroots and containers can be set up and used for many purposes, including;:
e running glibe software on musl (and vice versa)
e running software in a more controlled or sandboxed environment

e creating a rootfs for bootstrapping a system

64.1 Chroot Creation
64.1.1 xvoidstrap

‘xvoidstrap(1) (from xtools) can be used to create the chroot:

mkdir <chroot_dir>
XBPS_ARCH=<chroot_arch> xvoidstrap <chroot_dir> base-
container <other_pkgs>

<other_pkgs> is only needed if you want to pre-install other packages in the
chroot.

64.1.2 Manual Creation

Alternatively, this process can be done manually.
Create a directory that will contain the chroot, then install a base system in it via
the base-container package:

mkdir -p "<chroot_dir>/var/db/xbps/keys"

cp -a /var/db/xbps/keys/* "<chroot_dir>/var/db/xbps/keys

XBPS_ARCH=<chroot_arch> xbps-install -S -r <chroot_dir>
-R <repository> base-container <other_pkgs>

The <repository> may |[vary depending on architecturel <other_pkgs> is only
needed if you want to pre-install other packages in the chroot.

64.2 Chroot Usage
64.2.1 xchroot

‘xchroot(1) (from xtools) can be used to automatically set up and enter the chroot.

64.2.2 Manual Method

Alternatively, this process can be done manually.

If network access is required, copy /etc/resolv.conf into the chroot; /etc/hosts
may need to be copied as well.

Several directories then need to be mounted as follows:

mount -t proc none <chroot_dir>/proc
mount -t sysfs none <chroot_dir>/sys
mount --rbind /dev <chroot_dir>/dev
mount --rbind /run <chroot_dir>/run

120

https://man.voidlinux.org/xvoidstrap.1
https://man.voidlinux.org/xchroot.1

Use chroot(1)| to change to the new root, then run programs and do tasks as
usual. Once finished with the chroot, unmount the chroot using umount(8). If any
destructive actions are taken on the chroot directory without unmounting first, you
may need to reboot to repopulate the affected directories.

64.2.3 Alternatives

Bubblewrap bwrap(1l)|(from the bubblewrap package) has additional features like
the ability for sandboxing and does not require root access. bwrap is very flexible and
can be used in many ways, for example:

$ bwrap --bind <chroot_dir> / \
--dev /dev \
--proc /proc \
--bind /sys /sys \
--bind /run /run \
--ro-bind /etc/resolv.conf /etc/resolv.conf \
--ro-bind /etc/passwd /etc/passwd \
--ro-bind /etc/group /etc/group \
<command >

In this example, you will not be able to add or edit users or groups. When running
graphical applications with Xorg, you may need to also bind-mount /.Xauthority or
other files or directories.

The bwrap(1) manpage and the Arch Wiki article contain more examples of bwrap
usage.

Flatpak is a convenient option for running many applications, including
graphical or proprietary ones, on both glibc and musl systems.

Application Containers If a more integrated and polished solution is desired,
Void also provides OCI containers, that work with tools like docker| and podman.
These containers do not require the creation of a chroot directory before usage.

121

https://man.voidlinux.org/chroot.1
https://man.voidlinux.org/umount.8
https://man.voidlinux.org/bwrap.1
https://man.voidlinux.org/bwrap.1
https://wiki.archlinux.org/title/Bubblewrap#Usage_examples
https://voidlinux.org/download/#containers
https://www.docker.com
https://man.voidlinux.org/podman.1

65 libvirt

libvirt is an API and daemon for managing platform virtualization, supporting vir-
tualization technologies such as LXC, KVM, QEMU, Bhyve, Xen, VMWare, and
Hyper-V.

To use libvirt, install the libvirt package, ensure the dbus package is installed,
and the dbus, libvirtd, virtlockd and virtlogd services. The libvirtd
daemon can be reconfigured at runtime via virt-admin(1).

The 1libvirt package provides the virsh(1) interface to libvirtd. virsh is an in-
teractive shell and batch-scriptable tool for performing management tasks, including
creating, configuring and running virtual machines, and managing networks and stor-
age. Note that virsh usually needs to be run as root, as described in the virsh man

page:

Most virsh commands require root privileges to run due to the communi-
cations

channels used to talk to the hypervisor. Running as non root will return
an

error.

However, if you have the polkit and dbus packages installed and you enable
the dbus service, libvirtd will grant necessary privileges to any user added to the
libvirt group.

An alternative to wvirsh is provided by the virt-manager and
virt-manager-tools packages.

For general information on libvirt, refer to the libvirt wiki| and the wiki’s FAQ!
For an introduction to libvirt usage, refer to [the "VM lifecycle" page.

122

https://libvirt.org/
https://man.voidlinux.org/virt-admin.1
https://man.voidlinux.org/virsh.1
https://wiki.libvirt.org/page/Main_Page
https://wiki.libvirt.org/page/FAQ
https://wiki.libvirt.org/page/VM_lifecycle

66 LXC

The Linux Containers project includes three subprojects: LXC, LXD, and LXCFS.
The project also included the CGManager project, which has been deprecated in favor
of the CGroup namespace in recent kernels.

66.1 Configuring LXC

Install the 1xc package.

Creating and running privileged containers as root does not require any config-
uration; simply use the various 1xc-* commands, such as lxc-create(1), lxc-start(1),
Ixc-attach(1), etc.

66.1.1 Creating unprivileged containers

User IDs (UIDs) and group IDs (GIDs) normally range from 0 to 65535. Unprivileged
containers enhance security by mapping UID and GID ranges inside each container to
ranges not in use by the host system. The unused host ranges must be *subordinated*
to the user who will be running the unprivileged containers.

Subordinate UIDs and GIDs are assigned in the subuid(5)| and [subgid(5)| files,
respectively.

To create unprivileged containers, first edit /etc/subuid and /etc/subgid to
delegate ranges. For example:

root :1000000:65536
user : 2000000:65536

In each colon-delimited entry:

o the first field is the user to which a subordinate range will be assigned;

e the second field is the smallest numeric ID defining a subordinate range; and
e the third field is the number of consecutive IDs in the range.

The jusermod(8) program may also be used to manipulate suborinated IDs.

Generally, the number of consecutive IDs should be an integer multiple of 65536;
the starting value is not important, except to ensure that the various ranges defined
in the file do not overlap. In this example, root controls UIDs (or, from subgid,
GIDs) ranging from 1000000 to 1065535, inclusive; user controls IDs ranging from
2000000 to 2065535.

Before creating a container, the user owning the container will need an Ixc.conf(5)
file specifying the subuid and subgid range to use. For root-owned containers, this
file resides at /etc/lxc/default.conf; for unprivileged users, the file resides at
7.config/1xc/default .conf. Mappings are described in lines of the form

lxc.idmap = u 0 1000000 65536
lxc.idmap = g 0 1000000 65536

The isolated u character indicates a UID mapping, while the isolated g indicates

a GID mapping. The first numeric value should generally always be 0; this indicates
the start of the UID or GID range *as seen from within the container*. The second

123

https://linuxcontainers.org/
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxd/introduction/
https://linuxcontainers.org/lxcfs/introduction/
https://man.voidlinux.org/lxc-create.1
https://man.voidlinux.org/lxc-start.1
https://man.voidlinux.org/lxc-attach.1
https://man.voidlinux.org/subuid.5
https://man.voidlinux.org/subgid.5
https://man.voidlinux.org/usermod.8
https://man.voidlinux.org/lxc.conf.5

numeric value is the start of the corresponding range *as seen from outside the con-
tainer*, and may be an arbitrary value within the range delegated in /etc/subuid
or /etc/subgid. The final value is the number of consecutive IDs to map.

Note that, although the external range start is arbitrary, care must be taken to
ensure that the end of the range implied by the start and number does not extend
beyond the range of IDs delegated to the user.

If configuring a non-root user, edit /etc/lxc/lxc-usernet as root to specify a
network device quota. For example, to allow the user named user to create up to 10
veth devices connected to the 1xcbr0 bridge:

user veth 1lxcbrO 10

The user can now create and use unprivileged containers with the 1xc-* utilities.
To create a simple Void container named mycontainer, use a command similar to:

lxc-create -n mycontainer -t download -- \
--dist voidlinux --release current --arch amd64

You may substitute another architecture for amd64, and you may specify a musl
image by adding -variant musl to the end of the command. See the LXC Image
Server] for a list of available containers.

By default, configurations and mountpoints for system containers are stored
in /var/lib/lxc, while configurations for user containers and mountpoints are
stored in /.local/share/lxc. Both of these values can be modified by setting
1xc.lxcpath in the lxc.system.conf(5) file. The superuser may launch unprivi-
leged containers in the system lxc.lxcpath defined in /etc/lxc/lxc.conf; regu-
lar users may launch unprivileged containers in the personal 1xc.lxcpath defined in
/.config/lxc/1xc.conf.

All containers will share the same subordinate UID and GID maps by default.
This is permissible, but it means that an attacker who gains elevated access within
one container, and can somehow break out of that container, will have similar access to
other containers. To isolate containers from each other, alter the 1xc.idmap ranges
in default.conf to point to a unique range *before* you create each container.
Trying to fix permissions on a container created with the wrong map is possible, but
inconvenient.

66.2 LXD

LXD provides an alternative interface to LXC’s 1xc-* utilities. However, it does not
require the configuration described in [the previous sectionl

Install the 1xd package, and the 1xd service.

LXD users must belong to the 1xd group.

Use the 1xc command to manage instances, as described here.

124

http://images.linuxcontainers.org
http://images.linuxcontainers.org
https://man.voidlinux.org/lxc.system.conf.5
https://linuxcontainers.org/lxd/getting-started-cli/#lxd-client

67 GnuPG

Void ships both GnuPG legacy (as gnupgl) and GnuPG stable (as gnupg).

67.1 Smartcards

For using smartcards such as Yubikeys with GnuPG, there are two backends for
communicating with them through GnuPG: The internal CCID driver of GnuPG’s
scdaemon, or the PC/SC driver.

67.2 scdaemon with internal CCID driver

By default, scdaemon, which is required for using smartcards with GnuPG, uses
its internal CCID driver. For this to work, your smartcard needs to be one of the
smartcards in the udev rules here and you need to either be using elogind or be a
member of the plugdev group. If these two condition are fulfilled and you don’t have
pcsed running, gpg -card-status should successfully print your current card status.

67.3 scdaemon with pcscd backend

If you need to use pcsed for other reasons, run echo disable-ccid »
/ .gnupg/scdaemon.conf. Now, assuming your pcscd setup works correctly, gpg
-card-status should print your card status.

OpenPGP Card Tools

As an alternative to GnuPG with smartcards, Void also ships
openpgp-card-tools, a Rust based utility not reliant on GnuPG. It requires
using pcscd for interacting with smart cards, so if you want to use it in parallel with
GnuPG, ou need to configure scdaemon to use the pcscd backend, as described above
in "scdaemon with pcscd backend]".

125

https://github.com/void-linux/void-packages/blob/master/srcpkgs/gnupg/files/60-scdaemon.rules

68 PHP

There are two ways to install PHP packages with XBPS:
1. Using the versioned packages (recommended).

2. Using the meta-packages.

68.1 Versioned PHP Packages

It is generally recommended to use versioned PHP packages (e.g. php8.1,
php8.1-apcu, etc.) for most use cases as this ensures a consistent environment on
updates with minimal or no intervention required.

68.2 PHP Meta-packages

In Void, the php package is a meta-package that points to the latest upstream PHP
version. This convention is followed by all packages prefixed with php-, such as
php-fpm, as well as xdebug and composer. See the php template for a complete list.
It is recommended to only use these meta-packages for development purposes.

When using a PHP meta-package, be warned that updating may require manual
intervention if a new major PHP version has been added to the repository. As a part
of the version change, the configuration location will change to reflect the new version.
For example, upgrading from 8.0 to 8.1 would result in the configuration path changing
from /etc/php8.0 to /etc/php8.1. Any customizations that have been made need
to be manually applied to the new configuration directory. php-fpm updates require
special care since they include a runit service. In this case, ensure that the new runit
service is started and that applications using the previous version of php-fpm can
access the new php-fpm instance. In particular, make sure any applications accessing
the FPM instance have the correct TCP /unix socket address.

126

https://github.com/void-linux/void-packages/blob/master/srcpkgs/php/template

69 XBPS Package Manager

The X Binary Package System (XBPS) is a fast package manager that has been
designed and implemented from scratch. XBPS is managed by the Void Linux team
and developed at https://github.com /void-linux/xbps.

Most general package management is done with the following commands:

e xbps-query(1) searches for and displays information about packages installed
locally, or, if used with the -R flag, packages contained in repositories.

e xbps-install(1) installs and updates packages, and syncs repository indexes.

e xbps-remove(1l)/removes installed packages, and can also remove orphaned pack-
ages and cached package files.

e xbps-reconfigure(1) runs the configuration steps for installed packages, and can
be used to reconfigure certain packages after changes in their configuration files.
The latter usually requires the -force flag.

e xbps-alternatives(1)|lists or sets the alternatives provided by installed packages.
Alternatives is a system which allows multiple packages to provide common
functionality through otherwise conflicting files, by creating symlinks from the
common paths to package-specific versions that are selected by the user.

e xbps-pkgdb(1)| can report and fix issues in the package database, as well as
modify it.

e xbps-rindex(1) manages local binary package repositories.

Most questions can be answered by consulting the man pages for these tools, together
with the xbps.d(5) man page.

To learn how to build packages from source, refer to the README for the void-
packages repositoryl.

69.1 Updating

Like any other system, it is important to keep Void up-to-date. Use xbps-install(1)
to update:

xbps-install -Su

XBPS must use a separate transaction to update itself. If your update includes
the xbps package, you will need to run the above command a second time to apply
the rest of the updates.

69.1.1 Restarting Services

XBPS does not restart services when they are updated. This task is left to the ad-
ministrator, so they can orchestrate maintenance windows, ensure reasonable backup
capacity, and generally be present for service upgrades.

To find processes running different versions than are present on disk, use the
xcheckrestart tool provided by the xtools package:

$ xcheckrestart
11339 /opt/google/chrome/chrome (deleted) (google-chrome)

127

https://github.com/void-linux/xbps
https://man.voidlinux.org/xbps-query.1
https://man.voidlinux.org/xbps-install.1
https://man.voidlinux.org/xbps-remove.1
https://man.voidlinux.org/xbps-reconfigure.1
https://man.voidlinux.org/xbps-alternatives.1
https://man.voidlinux.org/xbps-pkgdb.1
https://man.voidlinux.org/xbps-rindex.1
https://man.voidlinux.org/xbps.d.5
https://github.com/void-linux/void-packages/blob/master/README.md
https://github.com/void-linux/void-packages/blob/master/README.md
https://man.voidlinux.org/xbps-install.1

xcheckrestart will print out the PID, path to the executable, status of the path
that was launched (almost always deleted) and the process name. xcheckrestart
can and should be run as an unprivileged user.

69.1.2 Kernel Panic After Update

If you get a kernel panic after an update, it is likely your system ran out of space in
/boot. Refer to "[Removing old kernels|' for further information.

69.2 Finding Files and Packages

To search available repositories for packages, use xbps-query(1):
$ xbps-query -Rs <search_pattern>

The -R flag specifies that repositories should be searched. Without it, -s searches
for locally-installed packages.

If you can’t find a file or program you expected to find after installing a package,
you can use xbps-query(1) to list the files provided by that package:

$ xbps-query -f <package_name>

The xtools package contains the xlocate(1) utility. xlocate works like locate(1),
but for files in the Void package repositories:

$ xlocate -8

Fetching objects: 11688, done.

From https://repo-default.voidlinux.org/xlocate/xlocate

+ e122c3634...a2659176f master -> master (forced
update)

$ xlocate xlocate

xtools-0.59_1 /usr/bin/xlocate

xtools -0.59_1 /usr/share/man/manl/xlocate.1 -> /usr/
share/man/manl/xtools .1

It is also possible to use xbps-query(1) to find files, though this is strongly dis-
couraged:

$ xbps-query -Ro /usr/bin/xlocate
xtools-0.46_1: /usr/bin/xlocate (regular file)

This requires xbps-query to download parts of every package to find the file.
xlocate, however, queries a locally cached index of all files, so no network access is
required.

To get a list of all installed packages, without their version:

$ xbps-query -1 | awk ’{ print $2 }’ | xargs -nl xbps-
uhelper getpkgname

128

https://man.voidlinux.org/xbps-query.1
https://man.voidlinux.org/xbps-query.1
https://man.voidlinux.org/xlocate.1
https://man.voidlinux.org/locate.1
https://man.voidlinux.org/xbps-query.1

70 Advanced Usage

70.1 Downgrading

XBPS allows you to downgrade a package to a specific package version.

70.1.1 Via xdowngrade

The easiest way to downgrade is to use xdowngrade from the xtools package, speci-
fying the package version to which you wish to downgrade:

xdowngrade /var/cache/xbps/pkg-1.0_1.xbps

70.1.2 Via XBPS

XBPS can be used to downgrade to a package version that is no longer available in
the repository index.

If the package version had been installed previously, it will be available in
/var/cache/xbps/. If not, it will need to be obtained from elsewhere; for the pur-
poses of this example, it will be assumed that the package version has been added to
/var/cache/xbps/.

First add the package version to your local repository:

xbps-rindex -a /var/cache/xbps/pkg-1.0_1.xbps
Then downgrade with xbps-install:
xbps-install -R /var/cache/xbps/ -f pkg-1.0_1
The -£ flag is necessary to force downgrade /re-installation of an already installed

package.

70.2 Holding packages
To prevent a package from being updated during a system update, use xbps-pkgdb(1):

xbps-pkgdb -m hold <package>
The hold can be removed with:

xbps-pkgdb -m unhold <package>

70.3 Repository-locking packages

If you’ve used xbps-src to build and install a package from a customized template,
or with custom build options, you may wish to prevent system updates from replacing
that package with a non-customized version. To ensure that a package is only updated
from the same repository used to install it, you can *repolock® it via xbps-pkgdb(1):

xbps-pkgdb -m repolock <package>
To remove the repolock:

xbps-pkgdb -m repounlock <package>

129

https://man.voidlinux.org/xbps-pkgdb.1
https://man.voidlinux.org/xbps-pkgdb.1

70.4 Ignoring Packages

Sometimes you may wish to remove a package whose functionality is being provided by
another package, but will be unable to do so due to dependency issues. For example,
you may wish to use doas(1) instead of sudo(8), but will be unable to remove the
sudo package due to it being a dependency of the base-system package. To remove
it, you will need to *ignore* the sudo package.

To ignore a package, add an appropriate ignorepkg entry in an xbps.d(5)| config-
uration file. For example:

ignorepkg=sudo

You will then be able to remove the sudo package using xbps-remove(1).

70.5 Virtual Packages

Virtual packages can be created with xbps.d(5) virtualpkg entries. Any request to
the virtual package will be resolved to the real package. For example, to create a
linux virtual package which will resolve to the 1inux5.6 package, create an xbps.d
configuration file with the contents:

virtualpkg=linux:1inux5.6

130

https://man.voidlinux.org/doas.1
https://man.voidlinux.org/sudo.8
https://man.voidlinux.org/xbps.d.5
https://man.voidlinux.org/xbps-remove.1
https://man.voidlinux.org/xbps.d.5

71 Repositories

Repositories are the heart of the XBPS package system. Repositories can be local or
remote. A repository contains binary package files, which may have signatures, and a
data file named $ARCH-repodata (e.g. x86_64-repodata), which may also be signed.
Note that, while local repositories do not require signatures, remote repositories
must be signed.
71.1 The main repository
The locations of the main repository in relation to a base are:
e glibc: /current

e musl: /current/musl

e aarch64 and aarch64-musl: /current/aarch64

71.2 Subrepositories

In addition to the main repository, which is enabled upon installation, Void provides
other official repositories maintained by the Void project, but not enabled by default:

e nonfree: contains software packages with non-free licenses

e multilib: contains 32-bit libraries for 64-bit systems (glibc only)

e multilib/nonfree: contains non-free multilib packages

e debug: contains debugging symbols for packages
These repositories can be enabled via the installation of the relevant package. These
packages only install a repository configuration file in /usr/share/xbps.d.
71.2.1 nonfree

Void has a nonfree repository for packages that don’t have free licenses. It can be
enabled by installing the void-repo-nonfree package.
Packages can end up in the nonfree repository for a number of reasons:

e Non-free licensed software with released source-code.
e Software released only as redistributable binary packages.

e Patented technology, which may or may not have an (otherwise) open imple-
mentation.

71.2.2 multilib

The multilib repository provides 32-bit packages as a compatibility layer inside a
64-bit system. It can be enabled by installing the void-repo-multilib package.

These repositories are only available for x86_64 systems running the glibc C
library.

131

71.2.3 multilib/nonfree

The multilib/nonfree repository provides additional 32-bit packages which have
non-free licenses. It can be enabled by installing the void-repo-multilib-nonfree
package.

71.2.4 debug

Void Linux packages come without debugging symbols. If you want to debug software
or look at a core dump you will need the debugging symbols. These packages are con-
tained in the debug repository. It can be enabled by installing the void-repo-debug
package.

Once enabled, symbols may be obtained for <package> by installing
<package>-dbg.

Finding debug dependencies The xtools package contains the xdbg(1) utility
to retrieve a list of debug packages, including dependencies, for a package:

$ xdbg bash

bash -dbg

glibc -dbg

xbps-install -S $(xdbg bash)

132

https://man.voidlinux.org/xtools.1

72 Mirrors

Void Linux maintains mirrors in several geographic regions for users. A fresh install
will default to repo-default.voidlinux.org, which may map to any Tier 1 mirror, but
you may have a better experience by [selecting a difterent mirror}

See xmirror.voidlinux.org for more

information and a list of available mirrors.

72.1 Tor Mirrors

Void Linux is also mirrored on the Tor network. See [Using Tor Mirrors| for more
information.

133

https://repo-default.voidlinux.org
https://xmirror.voidlinux.org

73 Changing Mirrors

Each repository has a file defining the URL for the mirror used. For official reposi-
tories, these files are installed by the package manager in /usr/share/xbps.d, but if
duplicate files are found in /etc/xbps.d, those values are used instead.

73.1 xmirror

To easily modify the currently selected mirror, xmirror(1)| (from the xmirror package)
can be used. This utility takes care of all steps for updating the selected mirror.

73.2 Manual Method

Alternatively, this can be done manually:
To modify mirror URLs cleanly, copy all the repository configuration files to
/etc/xbps.d and change the URLs in each copied repository file.

mkdir -p /etc/xbps.d

cp /usr/share/xbps.d/*-repository-*.conf /etc/xbps.d/

sed -i ’s|https://repo-default.voidlinux.org|<repository
>|g? /etc/xbps.d/*-repository-*.conf

After changing the URLs, you must synchronize xbps with the new mirrors:
xbps-install -S

You should see the new repository URLs while synchronizing. You can also use
xbps-query to verify the repository URLSs, but only after they have been synchro-
nized:

$ xbps-query -L
9970 https://repo-default.voidlinux.org/current (RSA
signed)
27 https://repo-default.voidlinux.org/current/multilib/
nonfree (RSA signed)
4230 https://repo-default.voidlinux.org/current/multilib
(RSA signed)
47 https://repo-default.voidlinux.org/current/nonfree (
RSA signed)
5368 https://repo-default.voidlinux.org/current/debug (
RSA signed)

Remember that repositories added afterwards will also need to be changed, or
they will use the default mirror.

134

https://man.voidlinux.org/xmirror.1

74 Using Tor Mirrors

Tor is an anonymizing software that bounces traffic via computers all around the
world. It can provide access to regular sites on the internet or to hidden sites only
available on the network.

The following Void Linux Mirrors are available on the Tor Network:

’ Repository \ Location ‘

[http: //lysator7eknrfl4d Trlyxvgeamrv7ucefgrrlhk 7rouv3sna25asetwid.onion/pub/voidlinux/| | EU: Sweden

74.1 Using XBPS with Tor

XBPS can be made to connect to mirrors using Tor. These mirrors can be normal
mirrors, via exit relays, or, for potentially greater anonymity, hidden service mirrors
on the network.

XBPS respects the SOCKS_PROXY environment variable, which makes it easy to use
via Tor.

74.1.1 Installing Tor

Tor is contained in the tor package.
After having installed Tor, you can start it as your own user:

$ tor

or enable its system service.
By default, Tor will act as a client and open a SOCKS5 proxy on TCP port 9050
on localhost.

74.1.2 Making XBPS connect via the SOCKS proxy

XBPS reads the SOCKS_PROXY environment variable and will use any proxy specified
in it. By simply setting the variable to the address and port of the proxy opened by
the Tor client, all XBPS’s connections will go over the Tor network.

An example upgrading your system over Tor:

export SOCKS_PROXY="socksb5://127.0.0.1:9050"
xbps-install -Su

74.1.3 Using a hidden service mirror

To use a hidden service mirror, the default mirrors need to be overwritten with config-
uration files pointing to .onion-addresses that are used internally on the Tor network.
XBPS allows overriding repository addresses under /etc/xbps.d.

Copy your repository files from /usr/share/xbps.d to /etc/xbps.d and replace
the addresses with that of an onion service (Lysator’s onion used as an example):

mkdir -p /etc/xbps.d

cp /usr/share/xbps.d/*-repository-*.conf /etc/xbps.d/

sed -i ’s|https://repo-default.voidlinux.org|http://
lysator7eknrfl47rlyxvgeamrv/ucefgrrlhk7rouv3sna2basetwid
.onion/pub/voidlinux|g’ /etc/xbps.d/*-repository-*.conf

135

http://lysator7eknrfl47rlyxvgeamrv7ucefgrrlhk7rouv3sna25asetwid.onion/pub/voidlinux/

Tor provides layered end-to-end encryption so HT'TPS is not necessary.

When installing packages, with SOCKS_PROXY set like the earlier example, XBPS
should indicate that it is synchronizing the repositories from the onion address spec-
ified in the override:

xbps-install -S

[*] Updating ‘http://
lysator7eknrfl47rlyxvgeamrv/ucefgrrlhk7rouv3sna2basetwid
.onion/pub/voidlinux/current/aarch64/nonfree/aarch64 -
repodata’

aarch64 -repodata: 4030B [avg rate: 54KB/s]

[*] Updating ‘http://
lysator7eknrfl47rlyxvgeamrv/ucefgrrlhk7rouv3sna2basetwid
.onion/pub/voidlinux/current/aarch64/aarch64-repodata’

aarch64 -repodata: 1441KB [avg rate: 773KB/s]

74.1.4 Security consideration

It is advisable to set SOCKS_PROXY automatically in your environment if you are using
an onion. If the setting is missing, a DNS query for the name of the hidden service
will leak to the configured DNS server.

To automatically set the environment variable, add it to a file in /etc/profile.d:

cat - <<EOF > /etc/profile.d/socksproxy.sh
#!/bin/sh

export SOCKS_PROXY="socksb5://127.0.0.1:9050"
EQF

136

75 Restricted Packages

Void offers some packages that are officially maintained, but not distributed. These
packages are marked as restricted and must be built from their [void-packages template
locally.

Packages can be restricted from distribution by either the upstream author or
Void. Void reserves the right to restrict distribution of any package for effectively any
reason, massive size being the most common. Another common reason is restrictive
licensing that does not allow third-party redistribution of source or binary packages.

75.1 Building manually

You can use xbps-src in the void-packages repository to build the restricted packages
from templates. For instructions on building packages from templates, refer to the
void-packages documentation, and the "Quick start" section in particular .

Remember that the building of restricted packages must be enabled explicitly
by setting XBPS_ALLOW_RESTRICTED=yes in your xbps-src configuration (in the
etc/conf file in the repository.)

75.2 Automated building

There is also a tool, xbps-mini-builder| which automates the process of building a list
of packages. The script can be called periodically and will only rebuild packages if
their templates have changed.

137

https://github.com/void-linux/void-packages
https://github.com/void-linux/void-packages
https://github.com/void-linux/void-packages
https://github.com/void-linux/void-packages#quick-start
https://github.com/the-maldridge/xbps-mini-builder

76 Custom Repositories

Void supports user-created repositories, both local and remote. This is only recom-
mended for serving custom packages created personally, or packages from another
trusted source. The Void project does not support *any* third-party package reposi-
tories - the use of third-party software packages poses very serious security concerns,
and risks serious damage your system.

76.1 Adding custom repositories
To add a custom repository, create a file in /etc/xbps.d, with the contents:
repository=<URL>

where <URL> is either a local directory or a URL to a remote repository.
For example, to define a remote repository:

echo ’repository=http://my.domain.com/repo’ > /etc/xbps.
d/my-remote-repo.conf

Remote repositories need to be xbps-install(1) refuses to install packages
from remote repositories if they are not signed.

To define a local repository:

echo ’repository=/path/to/repo’ > /etc/xbps.d/my-local-
repo.conf

138

https://man.voidlinux.org/xbps-install.1

77 Signing Repositories
Remote repositories must be signed. Local repositories do not need to be signed.
The xbps-rindex(1) tool is used to sign repositories.
The private key for signing packages needs to be a PEM-encoded RSA key. The
key can be generated with either ssh-keygen(1) or openssl(1):

$ ssh-keygen -t rsa -m PEM -f private.pem

$ openssl genrsa -out private.pem

Once the key is generated, the public part of the private key has to be added to
the repository metadata. This step is required only once.

$ xbps-rindex --privkey private.pem --sign --signedby "I’m
Groot" /path/to/repository/dir

Then sign one or more packages with the following command:

$ xbps-rindex --privkey private.pem --sign-pkg /path/to/
repository/dir/*. xbps

Note that future packages will not be automatically signed.

139

https://man.voidlinux.org/xbps-rindex.1
https://man.voidlinux.org/ssh-keygen.1
https://man.voidlinux.org/openssl.1

78 Troubleshooting XBPS

Sometimes the package manager gets in a weird spot and can’t fix itself without help.
This section documents important fixes and things that can go wrong when working
with XBPS.

78.1 Section Contents
e [Common Issues

o [Static XBPY

140

79 Common Issues

79.1 Verifying RSA keys

If the Void RSA key has changed, xbps-install(1) will report the new key fingerprint
and ask you to confirm it:

<repository> repository has been RSA signed by "Void Linux

Fingerprint: <rsa_fingerprint>
Do you want to import this public key? [Y/n]

To verify the key, ensure the <rsa_fingerprint> matches one of the fingerprints
in both void-packages and void-mklive,

79.2 Errors while updating or installing packages

If there are any errors while updating or installing a new package, make sure that you
are using the latest version of the remote repository index. Running xbps-install(1)
with the -S option will guarantee that.

79.2.1 "Operation not permitted"

An "Operation not permitted" error, such as:

ERROR: [reposync] failed to fetch file https://repo-
default.voidlinux.org/current/nonfree/x86_64-repodata’:
Operation not permitted

can be caused by your system’s date and/or time being incorrect. Ensure your
[date and timel are correct.
79.2.2 "Not Found"
A "Not Found" error, such as:
ERROR: [reposync] failed to fetch file ‘https://repo-

default.voidlinux.org/current/musl/x86_64-repodata’:
Not Found

usually means your XBPS configuration is pointing to the wrong repositories for
your system. Confirm that your xbps.d(5) files refer to [the correct repositories|

79.2.3 shlib errors

An "unresolvable shlib" error, such as:
1ibllvm8-8.0.1_2: broken, unresolvable shlib ‘libffi.so.6’

is probably due to outdated or orphan packages. To check for outdated packages,
simply try to [update your system| Orphan packages, on the other hand, have been
removed from the Void repos, but are still installed on your system; they can be
removed by running xbps-remove(1) with the -o option.

If you get an error message saying:

141

https://man.voidlinux.org/xbps-install.1
https://github.com/void-linux/void-packages/tree/master/common/repo-keys
https://github.com/void-linux/void-mklive/tree/master/keys
https://man.voidlinux.org/xbps-install.1
https://man.voidlinux.org/xbps.d.5
https://man.voidlinux.org/xbps-remove.1

Transaction aborted due to unresolved shlibs

the repositories are in the staging state, which can happen due to large builds.
The solution is to wait for the builds to finish. You can view the builds’ progress in
the Buildbot’s Waterfall Display.

79.2.4 repodata errors

In March 2020, the compression format used for the repository data (repodata) was
changed from gzip to zstd. If XBPS wasn’t updated to version 0.54 (released June
2019) or newer, it is not possible to update the system with it. Unfortunately, there
isn’t an error message for this case, but it can be detected by running xbps-install
with the -Sd flags. The debug message for this error is shown below.

[DEBUG] [repol]l ¢//var/db/xbps/https___repo-
default_voidlinux_org_current/x86_64-repodata’ failed
to open repodata archive Invalid or incomplete
multibyte or wide character

In this situation, it is necessary to follow the steps in

79.3 Broken systems

If your system is for some reason broken and can’t perform updates or package instal-
lations, using a [statically linked version of xbps| to update and install packages can
help you avoid reinstalling the whole system.

142

https://build.voidlinux.org/waterfall

80 Static XBPS

In rare cases, it is possible to break the system sufficiently that XBPS can no longer
function. This usually happens while trying to do unsupported things with libc, but
can also happen when an update contains a corrupt glibc archive or otherwise fails
to unpack and configure fully.

Another issue that can present itself is in systems with a XBPS version before 0.54
(released June 2019). These systems will be impossible to update from the official
repositories using the regular update procedure, due a change in the compression
format used for repository data, which was made in March 2020.

In these cases it is possible to recover your system with a separate, statically
compiled copy of XBPS.

80.1 Obtaining static XBPS

Statically compiled versions of XBPS are available on all mirrors in the static/
directory. The link below points to the static copies on the primary mirror in the EU:
https://repo-default.voidlinux.org/static
Download and unpack the latest version, or the version that matches the broken
copy on your system (with a preference for the latest copy).

80.2 Using static XBPS

The tools in the static set are identical to the normal ones found on most systems.
The only difference is that these tools are statically linked to the musl C library, and
should work on systems where nothing else does. On systems that can no longer
boot, it is recommended to chroot in using a Void installation medium and use the
static tools from there, as it is unlikely that even a shell will work correctly on those
systems. When using static XBPS with a glibc installation, the environment variable
XBPS_ARCH needs to be set.

143

https://repo-default.voidlinux.org/static

81 Contributing

There’s more to running a distribution than just writing code.

To contribute to the Void packages repository, start by reading the CONTRIBUT-
ING| document in the void-packages GitHub repository.

To contribute to this Handbook, read CONTRIBUTING in the void-docs reposi-
tory.

If you have any questions, feel free to ask them via IRC in #voidlinux on
irc.libera.chat, or in the voidlinux subredditl

81.1 Usage Statistics

If you would like to contribute usage reports, the [PopCorn| program reports installa-
tion statistics back to the Void project. These statistics are purely opt-in - PopCorn
is *not* installed or enabled by default on any Void systems. Additionally, PopCorn
requires that port 8001 not be blocked on your system.

PopCorn only reports which packages are installed, their version, and the host
CPU architecture (the output of xuname). This does not report which services are en-
abled, or any other personal information. Individual systems are tracked persistently
by a random (client-generated) UUID, to ensure that each system is only counted
once in each 24-hour sampling period.

The data collected by *PopCorn* is available to view at
http://popcorn.voidlinux.org

81.1.1 Setting up PopCorn

First, install the PopCorn package. Then, enable the popcorn service, which will
attempt to report statistics once per day.

144

https://github.com/void-linux/void-packages/blob/master/CONTRIBUTING.md
https://github.com/void-linux/void-packages/blob/master/CONTRIBUTING.md
https://github.com/void-linux/void-docs/blob/master/CONTRIBUTING.md
https://reddit.com/r/voidlinux
https://github.com/the-maldridge/popcorn
http://popcorn.voidlinux.org

82 Contributing To void-docs

The sources for this handbook are hosted in the void-docs repository on GitHub. If
you would like to make a contribution, please read about[the purpose of the Handbook]
follow our style guide| and submit a pull request.

145

https://github.com/void-linux/void-docs
https://github.com
https://github.com/void-linux/void-docs/blob/master/CONTRIBUTING.md#style-guide
https://github.com/void-linux/void-docs/blob/master/CONTRIBUTING.md#submitting-changes

	About
	History
	About This Handbook
	Reading The Manuals
	Example Commands
	Placeholders

	InfraDocs
	Installation
	Base system requirements
	Downloading installation media
	Verifying images
	Verifying image integrity
	Verifying digital signature

	Live Installers
	Installer images
	Base images
	Xfce image

	Accessibility support
	Kernel Command-line Parameters

	Prepare Installation Media
	Create a bootable USB drive or SD card on Linux
	Identify the Device
	Write the live image

	Burning to a CD or DVD

	Partitioning Notes
	BIOS system notes
	UEFI system notes
	Swap partitions
	Boot partition (optional)
	Other partitions

	Installation Guide
	Booting
	Keyboard
	Network
	Source
	Hostname
	Locale
	Timezone
	Root password
	User account
	Bootloader
	Partition
	Filesystems
	Review settings
	Install
	Post installation

	Advanced Installation Guides
	Section Contents

	Installation via chroot (x86/x86_64/aarch64)
	Prepare Filesystems
	Create a New Root and Mount Filesystems

	Base Installation
	The XBPS Method
	The ROOTFS Method

	Configuration
	Entering the Chroot
	Install base-system (ROOTFS method only)
	Installation Configuration
	Set a Root Password
	Configure fstab
	Enable services

	Installing GRUB
	Troubleshooting GRUB installation
	Installing on removable media or non-compliant UEFI systems

	Finalization

	Full Disk Encryption
	Partitioning
	Encrypted volume configuration
	System installation
	Filesystem configuration
	GRUB configuration

	LUKS key setup
	Complete system installation

	Installing Void on a ZFS Root
	ZFSBootMenu
	Traditional bootloaders
	Installation media
	Partition disks
	Create a ZFS pool
	Create initial filesystems
	Mount the ZFS hierarchy
	Installation

	ARM Devices
	Installation
	Pre-built images
	Custom partition layout
	Tarball installation
	Chroot installation

	Configuration
	Logging in
	fstab
	System time
	Graphical session

	Supported Platforms
	Raspberry Pi
	Supported Models
	Raspberry Pi 5 Kernel
	Enabling hardware RNG device
	Graphical session
	Hardware
	Audio
	Serial

	I2C
	Memory cgroup

	musl
	Incompatible software
	glibc chroot

	Configuration
	Package Documentation
	Manual Pages
	Localized manual pages
	With mdocml

	Firmware
	Microcode
	Intel
	AMD
	Verification

	Removing firmware

	Locales and Translations
	Enabling locales
	Setting the system locale
	Application locale

	Users and Groups
	Default shell
	sudo
	Default Groups

	Services and Daemons - runit
	Section Contents
	Service Directories
	Configuring Services
	Editing Services

	Managing Services
	Runsvdirs
	Booting A Different runsvdir

	Basic Usage
	Enabling Services
	Disabling Services
	Testing Services

	Per-User Services
	Logging
	Syslog
	Socklog
	Other syslog daemons

	rc.conf, rc.local and rc.shutdown
	rc.conf
	KEYMAP
	HARDWARECLOCK
	FONT

	rc.local
	rc.shutdown

	Cron
	Solid State Drives
	Periodic TRIM with cron
	Continuous TRIM with fstab discard
	LVM
	LUKS
	Non-root devices
	Root devices
	Verifying configuration

	ZFS
	Periodic TRIM
	Autotrim

	Security
	Section Contents

	AppArmor
	Date and Time
	Timezone
	Hardware clock
	NTP
	NTP
	OpenNTPD
	Chrony
	ntpd-rs

	Kernel
	Kernel series
	Removing old kernels
	Removing the default kernel series
	Switching to another kernel series
	Changing the default initramfs generator
	cmdline
	GRUB
	dracut

	Kernel hardening
	Kernel modules
	Loading kernel modules during boot
	Blacklisting kernel modules
	Blacklisting modules in the initramfs
	dracut
	mkinitcpio

	Kernel hooks
	Install hooks
	Remove hooks

	Dynamic Kernel Module Support (DKMS)

	Power Management
	acpid
	elogind
	Power Saving - tlp

	Network
	Interface Names
	Static Configuration
	Bridge Interfaces
	dhcpcd
	Wireless

	Firewalls
	iptables
	Applying the rules at boot
	Applying the rules at runtime

	nftables
	Applying the rules at boot
	Applying the rules at runtime

	wpa_supplicant
	WPA-PSK
	WPA-EAP
	WEP
	The wpa_supplicant service
	Using wpa_cli

	IWD
	Installation
	Usage
	Configuration
	Daemon configuration
	Network configuration

	Troubleshooting

	NetworkManager
	Starting NetworkManager
	Configuring NetworkManager
	Eduroam with NetworkManager
	Dependencies
	Installation

	ConnMan
	Starting ConnMan
	Configuring ConnMan
	ConnMan CLI
	ConnMan Front-End Tools

	Preventing DNS overrides by ConnMan

	Network Filesystems
	NFS
	Mounting an NFS Share
	Setting up a server (NFSv4, Kerberos disabled)

	Session and Seat Management
	D-Bus
	elogind
	seatd
	XDG_RUNTIME_DIR

	Graphical Session
	Graphics Drivers
	Section Contents

	AMD or ATI
	OpenGL
	Vulkan
	Xorg
	Video acceleration

	Intel
	OpenGL
	Vulkan
	Video acceleration
	Troubleshooting

	NVIDIA
	nouveau (Open Source Driver)
	nvidia (Proprietary Driver)
	32-bit program support (glibc only)
	Reverting from nvidia to nouveau
	Uninstalling nvidia
	Keeping both drivers

	NVIDIA Optimus
	PRIME Render Offload
	Bumblebee
	Nouveau PRIME

	Xorg
	Installation
	Video Drivers
	Open Source Drivers
	DDX
	Modesetting

	Proprietary Drivers

	Input Drivers
	Xorg Configuration
	Forcing the modesetting driver

	Starting X Sessions
	startx
	Display Managers

	Wayland
	Installation
	Desktop Environments
	Standalone compositors
	Video drivers
	Seat management
	Native applications
	Web browsers
	Running X applications inside Wayland

	Configuration

	Fonts
	Icons
	GTK

	XDG Desktop Portals
	Installation
	Configuration

	GNOME
	Pre-installation
	Installation
	Starting GNOME

	KDE
	Installation
	Dolphin
	Thumbnail Previews

	Multimedia
	Audio setup

	ALSA
	Configuration
	Dmix

	PipeWire
	Prerequisites
	Basic Setup
	Session Management
	PulseAudio interface
	Testing
	Launching Automatically

	Optional Setup
	Command-line and Terminal interfaces
	Graphical interfaces
	Bluetooth audio
	ALSA integration
	JACK interface

	Troubleshooting
	Common errors
	Only a "dummy" output is found

	PulseAudio
	Bluetooth
	Installation
	Usage
	Configuration

	TeX Live
	Configuring TeX Live
	Installing/Updating TeX packages

	External Applications
	Programming Languages
	Restricted Packages
	Non-x86_64 Arch
	Flatpak
	Troubleshooting

	AppImages
	Octave Packages
	MATLAB
	Steam

	Printing
	Installing Printing Drivers
	Driverless printing
	Gutenprint drivers
	HP drivers
	Brother drivers
	Drivers for Epson Inkjet printers
	Canon PIXMA/MAXIFY drivers

	Configuring a New Printer
	Automatically
	Web interface
	Command line
	Graphical interface

	Troubleshooting
	USB printer not shown

	Containers and Virtual Machines
	Section Contents

	Creating and using chroots and containers
	Chroot Creation
	xvoidstrap
	Manual Creation

	Chroot Usage
	xchroot
	Manual Method
	Alternatives
	Bubblewrap
	Flatpak
	Application Containers

	libvirt
	LXC
	Configuring LXC
	Creating unprivileged containers

	LXD

	GnuPG
	Smartcards
	scdaemon with internal CCID driver
	scdaemon with pcscd backend

	PHP
	Versioned PHP Packages
	PHP Meta-packages

	XBPS Package Manager
	Updating
	Restarting Services
	Kernel Panic After Update

	Finding Files and Packages

	Advanced Usage
	Downgrading
	Via xdowngrade
	Via XBPS

	Holding packages
	Repository-locking packages
	Ignoring Packages
	Virtual Packages

	Repositories
	The main repository
	Subrepositories
	nonfree
	multilib
	multilib/nonfree
	debug
	Finding debug dependencies

	Mirrors
	Tor Mirrors

	Changing Mirrors
	xmirror
	Manual Method

	Using Tor Mirrors
	Using XBPS with Tor
	Installing Tor
	Making XBPS connect via the SOCKS proxy
	Using a hidden service mirror
	Security consideration

	Restricted Packages
	Building manually
	Automated building

	Custom Repositories
	Adding custom repositories

	Signing Repositories
	Troubleshooting XBPS
	Section Contents

	Common Issues
	Verifying RSA keys
	Errors while updating or installing packages
	"Operation not permitted"
	"Not Found"
	shlib errors
	repodata errors

	Broken systems

	Static XBPS
	Obtaining static XBPS
	Using static XBPS

	Contributing
	Usage Statistics
	Setting up PopCorn

	Contributing To void-docs

